MakeItFrom.com
Menu (ESC)

5182 Aluminum vs. Grade M35-2 Nickel

5182 aluminum belongs to the aluminum alloys classification, while grade M35-2 nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5182 aluminum and the bottom bar is grade M35-2 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
160
Elongation at Break, % 1.1 to 12
28
Fatigue Strength, MPa 100 to 130
160
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 25
62
Tensile Strength: Ultimate (UTS), MPa 280 to 420
500
Tensile Strength: Yield (Proof), MPa 130 to 360
230

Thermal Properties

Latent Heat of Fusion, J/g 390
280
Maximum Temperature: Mechanical, °C 180
900
Melting Completion (Liquidus), °C 640
1280
Melting Onset (Solidus), °C 590
1230
Specific Heat Capacity, J/kg-K 900
430
Thermal Conductivity, W/m-K 130
22
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
3.3
Electrical Conductivity: Equal Weight (Specific), % IACS 94
3.4

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
55
Density, g/cm3 2.7
8.8
Embodied Carbon, kg CO2/kg material 8.9
8.1
Embodied Energy, MJ/kg 150
110
Embodied Water, L/kg 1180
250

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.6 to 49
120
Resilience: Unit (Modulus of Resilience), kJ/m3 120 to 950
170
Stiffness to Weight: Axial, points 14
10
Stiffness to Weight: Bending, points 51
21
Strength to Weight: Axial, points 29 to 44
16
Strength to Weight: Bending, points 36 to 47
16
Thermal Diffusivity, mm2/s 53
5.7
Thermal Shock Resistance, points 12 to 19
17

Alloy Composition

Aluminum (Al), % 93.2 to 95.8
0
Carbon (C), % 0
0 to 0.35
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 0 to 0.15
26 to 33
Iron (Fe), % 0 to 0.35
0 to 3.5
Magnesium (Mg), % 4.0 to 5.0
0
Manganese (Mn), % 0.2 to 0.5
0 to 1.5
Nickel (Ni), % 0
59.1 to 74
Niobium (Nb), % 0
0 to 0.5
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.2
0 to 2.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0