MakeItFrom.com
Menu (ESC)

5182 Aluminum vs. C43000 Brass

5182 aluminum belongs to the aluminum alloys classification, while C43000 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5182 aluminum and the bottom bar is C43000 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
110
Elongation at Break, % 1.1 to 12
3.0 to 55
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 25
42
Shear Strength, MPa 170 to 240
230 to 410
Tensile Strength: Ultimate (UTS), MPa 280 to 420
320 to 710
Tensile Strength: Yield (Proof), MPa 130 to 360
130 to 550

Thermal Properties

Latent Heat of Fusion, J/g 390
190
Maximum Temperature: Mechanical, °C 180
170
Melting Completion (Liquidus), °C 640
1030
Melting Onset (Solidus), °C 590
1000
Specific Heat Capacity, J/kg-K 900
380
Thermal Conductivity, W/m-K 130
120
Thermal Expansion, µm/m-K 24
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
27
Electrical Conductivity: Equal Weight (Specific), % IACS 94
28

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
29
Density, g/cm3 2.7
8.6
Embodied Carbon, kg CO2/kg material 8.9
2.8
Embodied Energy, MJ/kg 150
46
Embodied Water, L/kg 1180
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.6 to 49
20 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 120 to 950
82 to 1350
Stiffness to Weight: Axial, points 14
7.1
Stiffness to Weight: Bending, points 51
19
Strength to Weight: Axial, points 29 to 44
10 to 23
Strength to Weight: Bending, points 36 to 47
12 to 20
Thermal Diffusivity, mm2/s 53
36
Thermal Shock Resistance, points 12 to 19
11 to 25

Alloy Composition

Aluminum (Al), % 93.2 to 95.8
0
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 0 to 0.15
84 to 87
Iron (Fe), % 0 to 0.35
0 to 0.050
Lead (Pb), % 0
0 to 0.1
Magnesium (Mg), % 4.0 to 5.0
0
Manganese (Mn), % 0.2 to 0.5
0
Silicon (Si), % 0 to 0.2
0
Tin (Sn), % 0
1.7 to 2.7
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.25
9.7 to 14.3
Residuals, % 0
0 to 0.5