MakeItFrom.com
Menu (ESC)

5182 Aluminum vs. C44500 Brass

5182 aluminum belongs to the aluminum alloys classification, while C44500 brass belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5182 aluminum and the bottom bar is C44500 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
110
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 25
41
Tensile Strength: Ultimate (UTS), MPa 280 to 420
350
Tensile Strength: Yield (Proof), MPa 130 to 360
120

Thermal Properties

Latent Heat of Fusion, J/g 390
180
Maximum Temperature: Mechanical, °C 180
140
Melting Completion (Liquidus), °C 640
940
Melting Onset (Solidus), °C 590
900
Specific Heat Capacity, J/kg-K 900
380
Thermal Conductivity, W/m-K 130
110
Thermal Expansion, µm/m-K 24
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
25
Electrical Conductivity: Equal Weight (Specific), % IACS 94
27

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
26
Density, g/cm3 2.7
8.3
Embodied Carbon, kg CO2/kg material 8.9
2.7
Embodied Energy, MJ/kg 150
46
Embodied Water, L/kg 1180
330

Common Calculations

Resilience: Unit (Modulus of Resilience), kJ/m3 120 to 950
65
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 51
19
Strength to Weight: Axial, points 29 to 44
12
Strength to Weight: Bending, points 36 to 47
13
Thermal Diffusivity, mm2/s 53
35
Thermal Shock Resistance, points 12 to 19
12

Alloy Composition

Aluminum (Al), % 93.2 to 95.8
0
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 0 to 0.15
70 to 73
Iron (Fe), % 0 to 0.35
0 to 0.060
Lead (Pb), % 0
0 to 0.070
Magnesium (Mg), % 4.0 to 5.0
0
Manganese (Mn), % 0.2 to 0.5
0
Phosphorus (P), % 0
0.020 to 0.1
Silicon (Si), % 0 to 0.2
0
Tin (Sn), % 0
0.9 to 1.2
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.25
25.2 to 29.1
Residuals, % 0
0 to 0.4