MakeItFrom.com
Menu (ESC)

5251 Aluminum vs. A201.0 Aluminum

Both 5251 aluminum and A201.0 aluminum are aluminum alloys. They have a very high 95% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 5251 aluminum and the bottom bar is A201.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
71
Elongation at Break, % 2.0 to 19
4.7
Fatigue Strength, MPa 59 to 110
97
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
27
Tensile Strength: Ultimate (UTS), MPa 180 to 280
480
Tensile Strength: Yield (Proof), MPa 67 to 250
420

Thermal Properties

Latent Heat of Fusion, J/g 400
390
Maximum Temperature: Mechanical, °C 180
170
Melting Completion (Liquidus), °C 650
650
Melting Onset (Solidus), °C 610
570
Specific Heat Capacity, J/kg-K 900
880
Thermal Conductivity, W/m-K 150
120
Thermal Expansion, µm/m-K 24
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 37
30
Electrical Conductivity: Equal Weight (Specific), % IACS 120
90

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
11
Density, g/cm3 2.7
3.0
Embodied Carbon, kg CO2/kg material 8.5
8.1
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1180
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.4 to 27
22
Resilience: Unit (Modulus of Resilience), kJ/m3 33 to 450
1250
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
46
Strength to Weight: Axial, points 18 to 29
44
Strength to Weight: Bending, points 26 to 35
45
Thermal Diffusivity, mm2/s 61
46
Thermal Shock Resistance, points 7.9 to 13
21

Alloy Composition

Aluminum (Al), % 95.5 to 98.2
93.7 to 95.5
Chromium (Cr), % 0 to 0.15
0
Copper (Cu), % 0 to 0.15
4.0 to 5.0
Iron (Fe), % 0 to 0.5
0 to 0.1
Magnesium (Mg), % 1.7 to 2.4
0.15 to 0.35
Manganese (Mn), % 0.1 to 0.5
0.2 to 0.4
Silicon (Si), % 0 to 0.4
0 to 0.050
Titanium (Ti), % 0 to 0.15
0.15 to 0.35
Zinc (Zn), % 0 to 0.15
0
Residuals, % 0
0 to 0.1