MakeItFrom.com
Menu (ESC)

5251 Aluminum vs. AISI 410S Stainless Steel

5251 aluminum belongs to the aluminum alloys classification, while AISI 410S stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5251 aluminum and the bottom bar is AISI 410S stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 44 to 79
160
Elastic (Young's, Tensile) Modulus, GPa 68
190
Elongation at Break, % 2.0 to 19
25
Fatigue Strength, MPa 59 to 110
180
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
76
Shear Strength, MPa 110 to 160
310
Tensile Strength: Ultimate (UTS), MPa 180 to 280
480
Tensile Strength: Yield (Proof), MPa 67 to 250
250

Thermal Properties

Latent Heat of Fusion, J/g 400
270
Maximum Temperature: Mechanical, °C 180
740
Melting Completion (Liquidus), °C 650
1440
Melting Onset (Solidus), °C 610
1400
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 150
30
Thermal Expansion, µm/m-K 24
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 37
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 120
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
7.0
Density, g/cm3 2.7
7.7
Embodied Carbon, kg CO2/kg material 8.5
1.9
Embodied Energy, MJ/kg 150
27
Embodied Water, L/kg 1180
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.4 to 27
100
Resilience: Unit (Modulus of Resilience), kJ/m3 33 to 450
170
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 18 to 29
17
Strength to Weight: Bending, points 26 to 35
18
Thermal Diffusivity, mm2/s 61
8.1
Thermal Shock Resistance, points 7.9 to 13
17

Alloy Composition

Aluminum (Al), % 95.5 to 98.2
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0 to 0.15
11.5 to 13.5
Copper (Cu), % 0 to 0.15
0
Iron (Fe), % 0 to 0.5
83.8 to 88.5
Magnesium (Mg), % 1.7 to 2.4
0
Manganese (Mn), % 0.1 to 0.5
0 to 1.0
Nickel (Ni), % 0
0 to 0.6
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.4
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.15
0
Residuals, % 0 to 0.15
0