MakeItFrom.com
Menu (ESC)

5251 Aluminum vs. ASTM A372 Grade L Steel

5251 aluminum belongs to the aluminum alloys classification, while ASTM A372 grade L steel belongs to the iron alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5251 aluminum and the bottom bar is ASTM A372 grade L steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 44 to 79
350
Elastic (Young's, Tensile) Modulus, GPa 68
190
Elongation at Break, % 2.0 to 19
14
Fatigue Strength, MPa 59 to 110
670
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
73
Shear Strength, MPa 110 to 160
700
Tensile Strength: Ultimate (UTS), MPa 180 to 280
1160
Tensile Strength: Yield (Proof), MPa 67 to 250
1040

Thermal Properties

Latent Heat of Fusion, J/g 400
250
Maximum Temperature: Mechanical, °C 180
430
Melting Completion (Liquidus), °C 650
1460
Melting Onset (Solidus), °C 610
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 150
44
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 37
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 120
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
3.5
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.5
1.7
Embodied Energy, MJ/kg 150
22
Embodied Water, L/kg 1180
54

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.4 to 27
150
Resilience: Unit (Modulus of Resilience), kJ/m3 33 to 450
2890
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 18 to 29
41
Strength to Weight: Bending, points 26 to 35
31
Thermal Diffusivity, mm2/s 61
12
Thermal Shock Resistance, points 7.9 to 13
34

Alloy Composition

Aluminum (Al), % 95.5 to 98.2
0
Carbon (C), % 0
0.38 to 0.43
Chromium (Cr), % 0 to 0.15
0.7 to 0.9
Copper (Cu), % 0 to 0.15
0
Iron (Fe), % 0 to 0.5
95.2 to 96.3
Magnesium (Mg), % 1.7 to 2.4
0
Manganese (Mn), % 0.1 to 0.5
0.6 to 0.8
Molybdenum (Mo), % 0
0.2 to 0.3
Nickel (Ni), % 0
1.7 to 2.0
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 0 to 0.4
0.15 to 0.35
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.15
0
Residuals, % 0 to 0.15
0