MakeItFrom.com
Menu (ESC)

5251 Aluminum vs. EN 1.7376 Steel

5251 aluminum belongs to the aluminum alloys classification, while EN 1.7376 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5251 aluminum and the bottom bar is EN 1.7376 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 44 to 79
210
Elastic (Young's, Tensile) Modulus, GPa 68
190
Elongation at Break, % 2.0 to 19
20
Fatigue Strength, MPa 59 to 110
320
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
75
Tensile Strength: Ultimate (UTS), MPa 180 to 280
710
Tensile Strength: Yield (Proof), MPa 67 to 250
460

Thermal Properties

Latent Heat of Fusion, J/g 400
270
Maximum Temperature: Mechanical, °C 180
600
Melting Completion (Liquidus), °C 650
1460
Melting Onset (Solidus), °C 610
1410
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 150
26
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 37
9.2
Electrical Conductivity: Equal Weight (Specific), % IACS 120
11

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
6.5
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.5
2.1
Embodied Energy, MJ/kg 150
29
Embodied Water, L/kg 1180
88

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.4 to 27
130
Resilience: Unit (Modulus of Resilience), kJ/m3 33 to 450
560
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 18 to 29
25
Strength to Weight: Bending, points 26 to 35
23
Thermal Diffusivity, mm2/s 61
6.9
Thermal Shock Resistance, points 7.9 to 13
20

Alloy Composition

Aluminum (Al), % 95.5 to 98.2
0
Carbon (C), % 0
0.12 to 0.19
Chromium (Cr), % 0 to 0.15
8.0 to 10
Copper (Cu), % 0 to 0.15
0 to 0.3
Iron (Fe), % 0 to 0.5
86.2 to 90.6
Magnesium (Mg), % 1.7 to 2.4
0
Manganese (Mn), % 0.1 to 0.5
0.35 to 0.65
Molybdenum (Mo), % 0
0.9 to 1.2
Nickel (Ni), % 0
0 to 0.4
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.4
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.15
0
Vanadium (V), % 0
0 to 0.050
Zinc (Zn), % 0 to 0.15
0
Residuals, % 0 to 0.15
0