MakeItFrom.com
Menu (ESC)

5251 Aluminum vs. Nickel 690

5251 aluminum belongs to the aluminum alloys classification, while nickel 690 belongs to the nickel alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5251 aluminum and the bottom bar is nickel 690.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 44 to 79
90
Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 2.0 to 19
3.4 to 34
Fatigue Strength, MPa 59 to 110
180 to 300
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
79
Shear Strength, MPa 110 to 160
420 to 570
Tensile Strength: Ultimate (UTS), MPa 180 to 280
640 to 990
Tensile Strength: Yield (Proof), MPa 67 to 250
250 to 760

Thermal Properties

Latent Heat of Fusion, J/g 400
320
Maximum Temperature: Mechanical, °C 180
1010
Melting Completion (Liquidus), °C 650
1380
Melting Onset (Solidus), °C 610
1340
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 150
14
Thermal Expansion, µm/m-K 24
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 37
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 120
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
50
Density, g/cm3 2.7
8.3
Embodied Carbon, kg CO2/kg material 8.5
8.2
Embodied Energy, MJ/kg 150
120
Embodied Water, L/kg 1180
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.4 to 27
31 to 170
Resilience: Unit (Modulus of Resilience), kJ/m3 33 to 450
160 to 1440
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 18 to 29
21 to 33
Strength to Weight: Bending, points 26 to 35
20 to 27
Thermal Diffusivity, mm2/s 61
3.5
Thermal Shock Resistance, points 7.9 to 13
16 to 25

Alloy Composition

Aluminum (Al), % 95.5 to 98.2
0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0 to 0.15
27 to 31
Copper (Cu), % 0 to 0.15
0 to 0.5
Iron (Fe), % 0 to 0.5
7.0 to 11
Magnesium (Mg), % 1.7 to 2.4
0
Manganese (Mn), % 0.1 to 0.5
0 to 0.5
Nickel (Ni), % 0
58 to 66
Silicon (Si), % 0 to 0.4
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.15
0
Residuals, % 0 to 0.15
0

Comparable Variants