MakeItFrom.com
Menu (ESC)

5252 Aluminum vs. AISI W5 Steel

5252 aluminum belongs to the aluminum alloys classification, while AISI W5 steel belongs to the iron alloys. There are 23 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5252 aluminum and the bottom bar is AISI W5 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
190
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 25
72
Tensile Strength: Ultimate (UTS), MPa 230 to 290
600 to 2360

Thermal Properties

Latent Heat of Fusion, J/g 400
250
Melting Completion (Liquidus), °C 650
1450
Melting Onset (Solidus), °C 610
1410
Specific Heat Capacity, J/kg-K 910
470
Thermal Conductivity, W/m-K 140
45
Thermal Expansion, µm/m-K 24
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 120
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
2.3
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.7
1.6
Embodied Energy, MJ/kg 160
21
Embodied Water, L/kg 1190
48

Common Calculations

Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 51
24
Strength to Weight: Axial, points 23 to 30
21 to 84
Strength to Weight: Bending, points 31 to 36
20 to 50
Thermal Diffusivity, mm2/s 57
12
Thermal Shock Resistance, points 10 to 13
20 to 78

Alloy Composition

Aluminum (Al), % 96.6 to 97.8
0
Carbon (C), % 0
1.1 to 1.2
Chromium (Cr), % 0
0.4 to 0.6
Copper (Cu), % 0 to 0.1
0 to 0.2
Iron (Fe), % 0 to 0.1
96.6 to 98.4
Magnesium (Mg), % 2.2 to 2.8
0
Manganese (Mn), % 0 to 0.1
0.1 to 0.4
Molybdenum (Mo), % 0
0 to 0.1
Nickel (Ni), % 0
0 to 0.2
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.080
0.1 to 0.4
Sulfur (S), % 0
0 to 0.030
Tungsten (W), % 0
0 to 0.15
Vanadium (V), % 0 to 0.050
0 to 0.1
Zinc (Zn), % 0 to 0.050
0
Residuals, % 0 to 0.1
0