MakeItFrom.com
Menu (ESC)

5252 Aluminum vs. ASTM A387 Grade 21 Steel

5252 aluminum belongs to the aluminum alloys classification, while ASTM A387 grade 21 steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5252 aluminum and the bottom bar is ASTM A387 grade 21 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 68 to 75
150 to 180
Elastic (Young's, Tensile) Modulus, GPa 68
190
Elongation at Break, % 4.5 to 11
21
Fatigue Strength, MPa 100 to 110
160 to 250
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 25
74
Shear Strength, MPa 140 to 160
310 to 370
Tensile Strength: Ultimate (UTS), MPa 230 to 290
500 to 590
Tensile Strength: Yield (Proof), MPa 170 to 240
230 to 350

Thermal Properties

Latent Heat of Fusion, J/g 400
260
Maximum Temperature: Mechanical, °C 180
480
Melting Completion (Liquidus), °C 650
1470
Melting Onset (Solidus), °C 610
1430
Specific Heat Capacity, J/kg-K 910
470
Thermal Conductivity, W/m-K 140
41
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 120
8.8

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
4.1
Density, g/cm3 2.7
7.9
Embodied Carbon, kg CO2/kg material 8.7
1.8
Embodied Energy, MJ/kg 160
23
Embodied Water, L/kg 1190
62

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 23
84 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 210 to 430
140 to 320
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 51
24
Strength to Weight: Axial, points 23 to 30
18 to 21
Strength to Weight: Bending, points 31 to 36
18 to 20
Thermal Diffusivity, mm2/s 57
11
Thermal Shock Resistance, points 10 to 13
14 to 17

Alloy Composition

Aluminum (Al), % 96.6 to 97.8
0
Carbon (C), % 0
0.050 to 0.15
Chromium (Cr), % 0
2.8 to 3.3
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.1
94.4 to 96
Magnesium (Mg), % 2.2 to 2.8
0
Manganese (Mn), % 0 to 0.1
0.3 to 0.6
Molybdenum (Mo), % 0
0.9 to 1.1
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.080
0 to 0.5
Sulfur (S), % 0
0 to 0.025
Vanadium (V), % 0 to 0.050
0
Zinc (Zn), % 0 to 0.050
0
Residuals, % 0 to 0.1
0