MakeItFrom.com
Menu (ESC)

5252 Aluminum vs. AZ80A Magnesium

5252 aluminum belongs to the aluminum alloys classification, while AZ80A magnesium belongs to the magnesium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 5252 aluminum and the bottom bar is AZ80A magnesium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
46
Elongation at Break, % 4.5 to 11
3.9 to 8.5
Fatigue Strength, MPa 100 to 110
140 to 170
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 25
18
Shear Strength, MPa 140 to 160
160 to 190
Tensile Strength: Ultimate (UTS), MPa 230 to 290
320 to 340
Tensile Strength: Yield (Proof), MPa 170 to 240
210 to 230

Thermal Properties

Latent Heat of Fusion, J/g 400
350
Maximum Temperature: Mechanical, °C 180
130
Melting Completion (Liquidus), °C 650
600
Melting Onset (Solidus), °C 610
490
Specific Heat Capacity, J/kg-K 910
990
Thermal Conductivity, W/m-K 140
77
Thermal Expansion, µm/m-K 24
26

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
11
Electrical Conductivity: Equal Weight (Specific), % IACS 120
59

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
12
Density, g/cm3 2.7
1.7
Embodied Carbon, kg CO2/kg material 8.7
23
Embodied Energy, MJ/kg 160
160
Embodied Water, L/kg 1190
990

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 23
12 to 24
Resilience: Unit (Modulus of Resilience), kJ/m3 210 to 430
500 to 600
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 51
69
Strength to Weight: Axial, points 23 to 30
51 to 55
Strength to Weight: Bending, points 31 to 36
60 to 63
Thermal Diffusivity, mm2/s 57
45
Thermal Shock Resistance, points 10 to 13
19 to 20

Alloy Composition

Aluminum (Al), % 96.6 to 97.8
7.8 to 9.2
Copper (Cu), % 0 to 0.1
0 to 0.050
Iron (Fe), % 0 to 0.1
0 to 0.0050
Magnesium (Mg), % 2.2 to 2.8
89 to 91.9
Manganese (Mn), % 0 to 0.1
0.12 to 0.5
Nickel (Ni), % 0
0 to 0.0050
Silicon (Si), % 0 to 0.080
0 to 0.1
Vanadium (V), % 0 to 0.050
0
Zinc (Zn), % 0 to 0.050
0.2 to 0.8
Residuals, % 0
0 to 0.3