MakeItFrom.com
Menu (ESC)

5252 Aluminum vs. EN 1.1106 Steel

5252 aluminum belongs to the aluminum alloys classification, while EN 1.1106 steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5252 aluminum and the bottom bar is EN 1.1106 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 68 to 75
160
Elastic (Young's, Tensile) Modulus, GPa 68
190
Elongation at Break, % 4.5 to 11
24
Fatigue Strength, MPa 100 to 110
270
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 25
73
Shear Strength, MPa 140 to 160
350
Tensile Strength: Ultimate (UTS), MPa 230 to 290
550
Tensile Strength: Yield (Proof), MPa 170 to 240
370

Thermal Properties

Latent Heat of Fusion, J/g 400
250
Maximum Temperature: Mechanical, °C 180
400
Melting Completion (Liquidus), °C 650
1460
Melting Onset (Solidus), °C 610
1420
Specific Heat Capacity, J/kg-K 910
470
Thermal Conductivity, W/m-K 140
50
Thermal Expansion, µm/m-K 24
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 120
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
2.3
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.7
1.6
Embodied Energy, MJ/kg 160
22
Embodied Water, L/kg 1190
50

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 23
120
Resilience: Unit (Modulus of Resilience), kJ/m3 210 to 430
360
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 51
24
Strength to Weight: Axial, points 23 to 30
19
Strength to Weight: Bending, points 31 to 36
19
Thermal Diffusivity, mm2/s 57
14
Thermal Shock Resistance, points 10 to 13
17

Alloy Composition

Aluminum (Al), % 96.6 to 97.8
0.020 to 0.024
Carbon (C), % 0
0 to 0.18
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 0 to 0.1
0 to 0.3
Iron (Fe), % 0 to 0.1
96.2 to 98.9
Magnesium (Mg), % 2.2 to 2.8
0
Manganese (Mn), % 0 to 0.1
1.1 to 1.7
Molybdenum (Mo), % 0
0 to 0.080
Nickel (Ni), % 0
0 to 0.5
Niobium (Nb), % 0
0 to 0.050
Nitrogen (N), % 0
0 to 0.012
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.080
0 to 0.5
Sulfur (S), % 0
0 to 0.0050
Titanium (Ti), % 0
0 to 0.030
Vanadium (V), % 0 to 0.050
0 to 0.1
Zinc (Zn), % 0 to 0.050
0
Residuals, % 0 to 0.1
0