MakeItFrom.com
Menu (ESC)

5252 Aluminum vs. EN 1.4606 Stainless Steel

5252 aluminum belongs to the aluminum alloys classification, while EN 1.4606 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5252 aluminum and the bottom bar is EN 1.4606 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
190
Elongation at Break, % 4.5 to 11
23 to 39
Fatigue Strength, MPa 100 to 110
240 to 420
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 25
75
Shear Strength, MPa 140 to 160
410 to 640
Tensile Strength: Ultimate (UTS), MPa 230 to 290
600 to 1020
Tensile Strength: Yield (Proof), MPa 170 to 240
280 to 630

Thermal Properties

Latent Heat of Fusion, J/g 400
300
Maximum Temperature: Mechanical, °C 180
910
Melting Completion (Liquidus), °C 650
1430
Melting Onset (Solidus), °C 610
1380
Specific Heat Capacity, J/kg-K 910
470
Thermal Conductivity, W/m-K 140
14
Thermal Expansion, µm/m-K 24
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
1.9
Electrical Conductivity: Equal Weight (Specific), % IACS 120
2.2

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
26
Density, g/cm3 2.7
7.9
Embodied Carbon, kg CO2/kg material 8.7
6.0
Embodied Energy, MJ/kg 160
87
Embodied Water, L/kg 1190
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 23
190 to 200
Resilience: Unit (Modulus of Resilience), kJ/m3 210 to 430
200 to 1010
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
24
Strength to Weight: Axial, points 23 to 30
21 to 36
Strength to Weight: Bending, points 31 to 36
20 to 28
Thermal Diffusivity, mm2/s 57
3.7
Thermal Shock Resistance, points 10 to 13
21 to 35

Alloy Composition

Aluminum (Al), % 96.6 to 97.8
0 to 0.35
Boron (B), % 0
0.0010 to 0.010
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
13 to 16
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.1
49.2 to 59
Magnesium (Mg), % 2.2 to 2.8
0
Manganese (Mn), % 0 to 0.1
1.0 to 2.0
Molybdenum (Mo), % 0
1.0 to 1.5
Nickel (Ni), % 0
24 to 27
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.080
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0
1.9 to 2.3
Vanadium (V), % 0 to 0.050
0.1 to 0.5
Zinc (Zn), % 0 to 0.050
0
Residuals, % 0 to 0.1
0