MakeItFrom.com
Menu (ESC)

5252 Aluminum vs. EN 1.5507 Steel

5252 aluminum belongs to the aluminum alloys classification, while EN 1.5507 steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5252 aluminum and the bottom bar is EN 1.5507 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 68 to 75
140 to 260
Elastic (Young's, Tensile) Modulus, GPa 68
190
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 25
73
Tensile Strength: Ultimate (UTS), MPa 230 to 290
450 to 880

Thermal Properties

Latent Heat of Fusion, J/g 400
250
Maximum Temperature: Mechanical, °C 180
410
Melting Completion (Liquidus), °C 650
1460
Melting Onset (Solidus), °C 610
1420
Specific Heat Capacity, J/kg-K 910
470
Thermal Conductivity, W/m-K 140
49
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 120
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
2.0
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.7
1.4
Embodied Energy, MJ/kg 160
19
Embodied Water, L/kg 1190
49

Common Calculations

Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 51
24
Strength to Weight: Axial, points 23 to 30
16 to 31
Strength to Weight: Bending, points 31 to 36
17 to 26
Thermal Diffusivity, mm2/s 57
13
Thermal Shock Resistance, points 10 to 13
13 to 26

Alloy Composition

Aluminum (Al), % 96.6 to 97.8
0.020 to 0.080
Boron (B), % 0
0.00080 to 0.0050
Carbon (C), % 0
0.21 to 0.25
Chromium (Cr), % 0
0.25 to 0.35
Copper (Cu), % 0 to 0.1
0 to 0.25
Iron (Fe), % 0 to 0.1
97.8 to 98.7
Magnesium (Mg), % 2.2 to 2.8
0
Manganese (Mn), % 0 to 0.1
0.8 to 1.0
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 0 to 0.080
0 to 0.15
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0
0 to 0.060
Vanadium (V), % 0 to 0.050
0
Zinc (Zn), % 0 to 0.050
0
Residuals, % 0 to 0.1
0