MakeItFrom.com
Menu (ESC)

5252 Aluminum vs. EN 1.7366 Steel

5252 aluminum belongs to the aluminum alloys classification, while EN 1.7366 steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5252 aluminum and the bottom bar is EN 1.7366 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 68 to 75
140 to 210
Elastic (Young's, Tensile) Modulus, GPa 68
190
Elongation at Break, % 4.5 to 11
17 to 19
Fatigue Strength, MPa 100 to 110
160 to 320
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 25
74
Shear Strength, MPa 140 to 160
290 to 440
Tensile Strength: Ultimate (UTS), MPa 230 to 290
460 to 710
Tensile Strength: Yield (Proof), MPa 170 to 240
230 to 480

Thermal Properties

Latent Heat of Fusion, J/g 400
260
Maximum Temperature: Mechanical, °C 180
510
Melting Completion (Liquidus), °C 650
1460
Melting Onset (Solidus), °C 610
1420
Specific Heat Capacity, J/kg-K 910
470
Thermal Conductivity, W/m-K 140
40
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
8.1
Electrical Conductivity: Equal Weight (Specific), % IACS 120
9.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
4.3
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.7
1.7
Embodied Energy, MJ/kg 160
23
Embodied Water, L/kg 1190
69

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 23
74 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 210 to 430
140 to 600
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
25
Strength to Weight: Axial, points 23 to 30
16 to 25
Strength to Weight: Bending, points 31 to 36
17 to 23
Thermal Diffusivity, mm2/s 57
11
Thermal Shock Resistance, points 10 to 13
13 to 20

Alloy Composition

Aluminum (Al), % 96.6 to 97.8
0
Carbon (C), % 0
0 to 0.18
Chromium (Cr), % 0
4.0 to 6.0
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.1
91.9 to 95.3
Magnesium (Mg), % 2.2 to 2.8
0
Manganese (Mn), % 0 to 0.1
0.3 to 0.8
Molybdenum (Mo), % 0
0.45 to 0.65
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.080
0 to 0.4
Sulfur (S), % 0
0 to 0.015
Vanadium (V), % 0 to 0.050
0
Zinc (Zn), % 0 to 0.050
0
Residuals, % 0 to 0.1
0