MakeItFrom.com
Menu (ESC)

5252 Aluminum vs. CC755S Brass

5252 aluminum belongs to the aluminum alloys classification, while CC755S brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5252 aluminum and the bottom bar is CC755S brass.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 68 to 75
110
Elastic (Young's, Tensile) Modulus, GPa 68
100
Elongation at Break, % 4.5 to 11
9.5
Poisson's Ratio 0.33
0.31
Shear Modulus, GPa 25
40
Tensile Strength: Ultimate (UTS), MPa 230 to 290
390
Tensile Strength: Yield (Proof), MPa 170 to 240
250

Thermal Properties

Latent Heat of Fusion, J/g 400
170
Maximum Temperature: Mechanical, °C 180
120
Melting Completion (Liquidus), °C 650
820
Melting Onset (Solidus), °C 610
780
Specific Heat Capacity, J/kg-K 910
390
Thermal Conductivity, W/m-K 140
120
Thermal Expansion, µm/m-K 24
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
27
Electrical Conductivity: Equal Weight (Specific), % IACS 120
30

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
23
Density, g/cm3 2.7
8.1
Embodied Carbon, kg CO2/kg material 8.7
2.7
Embodied Energy, MJ/kg 160
46
Embodied Water, L/kg 1190
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 23
33
Resilience: Unit (Modulus of Resilience), kJ/m3 210 to 430
290
Stiffness to Weight: Axial, points 14
7.1
Stiffness to Weight: Bending, points 51
19
Strength to Weight: Axial, points 23 to 30
14
Strength to Weight: Bending, points 31 to 36
15
Thermal Diffusivity, mm2/s 57
38
Thermal Shock Resistance, points 10 to 13
13

Alloy Composition

Aluminum (Al), % 96.6 to 97.8
0.4 to 0.7
Copper (Cu), % 0 to 0.1
59.5 to 61
Iron (Fe), % 0 to 0.1
0.050 to 0.2
Lead (Pb), % 0
1.2 to 1.7
Magnesium (Mg), % 2.2 to 2.8
0
Manganese (Mn), % 0 to 0.1
0 to 0.050
Nickel (Ni), % 0
0 to 0.2
Silicon (Si), % 0 to 0.080
0 to 0.050
Tin (Sn), % 0
0 to 0.3
Vanadium (V), % 0 to 0.050
0
Zinc (Zn), % 0 to 0.050
35.8 to 38.9
Residuals, % 0 to 0.1
0