MakeItFrom.com
Menu (ESC)

5252 Aluminum vs. CC764S Brass

5252 aluminum belongs to the aluminum alloys classification, while CC764S brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5252 aluminum and the bottom bar is CC764S brass.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 68 to 75
160
Elastic (Young's, Tensile) Modulus, GPa 68
110
Elongation at Break, % 4.5 to 11
15
Poisson's Ratio 0.33
0.31
Shear Modulus, GPa 25
41
Tensile Strength: Ultimate (UTS), MPa 230 to 290
680
Tensile Strength: Yield (Proof), MPa 170 to 240
290

Thermal Properties

Latent Heat of Fusion, J/g 400
180
Maximum Temperature: Mechanical, °C 180
130
Melting Completion (Liquidus), °C 650
850
Melting Onset (Solidus), °C 610
810
Specific Heat Capacity, J/kg-K 910
400
Thermal Conductivity, W/m-K 140
94
Thermal Expansion, µm/m-K 24
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
32
Electrical Conductivity: Equal Weight (Specific), % IACS 120
36

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
23
Density, g/cm3 2.7
7.9
Embodied Carbon, kg CO2/kg material 8.7
2.9
Embodied Energy, MJ/kg 160
49
Embodied Water, L/kg 1190
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 23
80
Resilience: Unit (Modulus of Resilience), kJ/m3 210 to 430
390
Stiffness to Weight: Axial, points 14
7.6
Stiffness to Weight: Bending, points 51
20
Strength to Weight: Axial, points 23 to 30
24
Strength to Weight: Bending, points 31 to 36
22
Thermal Diffusivity, mm2/s 57
30
Thermal Shock Resistance, points 10 to 13
22

Alloy Composition

Aluminum (Al), % 96.6 to 97.8
1.0 to 3.0
Antimony (Sb), % 0
0 to 0.050
Copper (Cu), % 0 to 0.1
52 to 66
Iron (Fe), % 0 to 0.1
0.5 to 2.5
Lead (Pb), % 0
0 to 0.3
Magnesium (Mg), % 2.2 to 2.8
0
Manganese (Mn), % 0 to 0.1
0.3 to 4.0
Nickel (Ni), % 0
0 to 3.0
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.080
0 to 0.1
Tin (Sn), % 0
0 to 0.3
Vanadium (V), % 0 to 0.050
0
Zinc (Zn), % 0 to 0.050
20.7 to 50.2
Residuals, % 0 to 0.1
0