MakeItFrom.com
Menu (ESC)

5252 Aluminum vs. Nickel 825

5252 aluminum belongs to the aluminum alloys classification, while nickel 825 belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5252 aluminum and the bottom bar is nickel 825.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 4.5 to 11
34
Fatigue Strength, MPa 100 to 110
190
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 25
78
Shear Strength, MPa 140 to 160
430
Tensile Strength: Ultimate (UTS), MPa 230 to 290
650
Tensile Strength: Yield (Proof), MPa 170 to 240
260

Thermal Properties

Latent Heat of Fusion, J/g 400
300
Maximum Temperature: Mechanical, °C 180
980
Melting Completion (Liquidus), °C 650
1400
Melting Onset (Solidus), °C 610
1370
Specific Heat Capacity, J/kg-K 910
460
Thermal Conductivity, W/m-K 140
11
Thermal Expansion, µm/m-K 24
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 120
1.7

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
41
Density, g/cm3 2.7
8.2
Embodied Carbon, kg CO2/kg material 8.7
7.2
Embodied Energy, MJ/kg 160
100
Embodied Water, L/kg 1190
230

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 23
180
Resilience: Unit (Modulus of Resilience), kJ/m3 210 to 430
170
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 51
24
Strength to Weight: Axial, points 23 to 30
22
Strength to Weight: Bending, points 31 to 36
20
Thermal Diffusivity, mm2/s 57
2.9
Thermal Shock Resistance, points 10 to 13
17

Alloy Composition

Aluminum (Al), % 96.6 to 97.8
0 to 0.2
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
19.5 to 23.5
Copper (Cu), % 0 to 0.1
1.5 to 3.0
Iron (Fe), % 0 to 0.1
22 to 37.9
Magnesium (Mg), % 2.2 to 2.8
0
Manganese (Mn), % 0 to 0.1
0 to 1.0
Molybdenum (Mo), % 0
2.5 to 3.5
Nickel (Ni), % 0
38 to 46
Silicon (Si), % 0 to 0.080
0 to 0.050
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0
0.6 to 1.2
Vanadium (V), % 0 to 0.050
0
Zinc (Zn), % 0 to 0.050
0
Residuals, % 0 to 0.1
0