MakeItFrom.com
Menu (ESC)

5252 Aluminum vs. Nickel 890

5252 aluminum belongs to the aluminum alloys classification, while nickel 890 belongs to the nickel alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5252 aluminum and the bottom bar is nickel 890.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 4.5 to 11
39
Fatigue Strength, MPa 100 to 110
180
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 25
78
Shear Strength, MPa 140 to 160
400
Tensile Strength: Ultimate (UTS), MPa 230 to 290
590
Tensile Strength: Yield (Proof), MPa 170 to 240
230

Thermal Properties

Latent Heat of Fusion, J/g 400
330
Maximum Temperature: Mechanical, °C 180
1000
Melting Completion (Liquidus), °C 650
1390
Melting Onset (Solidus), °C 610
1340
Specific Heat Capacity, J/kg-K 910
480
Thermal Expansion, µm/m-K 24
14

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
47
Density, g/cm3 2.7
8.1
Embodied Carbon, kg CO2/kg material 8.7
8.2
Embodied Energy, MJ/kg 160
120
Embodied Water, L/kg 1190
250

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 23
180
Resilience: Unit (Modulus of Resilience), kJ/m3 210 to 430
140
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
24
Strength to Weight: Axial, points 23 to 30
20
Strength to Weight: Bending, points 31 to 36
19
Thermal Shock Resistance, points 10 to 13
15

Alloy Composition

Aluminum (Al), % 96.6 to 97.8
0.050 to 0.6
Carbon (C), % 0
0.060 to 0.14
Chromium (Cr), % 0
23.5 to 28.5
Copper (Cu), % 0 to 0.1
0 to 0.75
Iron (Fe), % 0 to 0.1
17.3 to 33.9
Magnesium (Mg), % 2.2 to 2.8
0
Manganese (Mn), % 0 to 0.1
0 to 1.5
Molybdenum (Mo), % 0
1.0 to 2.0
Nickel (Ni), % 0
40 to 45
Niobium (Nb), % 0
0.2 to 1.0
Silicon (Si), % 0 to 0.080
1.0 to 2.0
Sulfur (S), % 0
0 to 0.015
Tantalum (Ta), % 0
0.1 to 0.6
Titanium (Ti), % 0
0.15 to 0.6
Vanadium (V), % 0 to 0.050
0
Zinc (Zn), % 0 to 0.050
0
Residuals, % 0 to 0.1
0