MakeItFrom.com
Menu (ESC)

5252 Aluminum vs. SAE-AISI 9260 Steel

5252 aluminum belongs to the aluminum alloys classification, while SAE-AISI 9260 steel belongs to the iron alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5252 aluminum and the bottom bar is SAE-AISI 9260 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 68 to 75
200
Elastic (Young's, Tensile) Modulus, GPa 68
190
Elongation at Break, % 4.5 to 11
21
Fatigue Strength, MPa 100 to 110
260
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 25
72
Shear Strength, MPa 140 to 160
420
Tensile Strength: Ultimate (UTS), MPa 230 to 290
660
Tensile Strength: Yield (Proof), MPa 170 to 240
380

Thermal Properties

Latent Heat of Fusion, J/g 400
280
Maximum Temperature: Mechanical, °C 180
400
Melting Completion (Liquidus), °C 650
1430
Melting Onset (Solidus), °C 610
1390
Specific Heat Capacity, J/kg-K 910
480
Thermal Conductivity, W/m-K 140
45
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 120
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
2.0
Density, g/cm3 2.7
7.7
Embodied Carbon, kg CO2/kg material 8.7
1.5
Embodied Energy, MJ/kg 160
20
Embodied Water, L/kg 1190
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 23
120
Resilience: Unit (Modulus of Resilience), kJ/m3 210 to 430
380
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 51
25
Strength to Weight: Axial, points 23 to 30
24
Strength to Weight: Bending, points 31 to 36
22
Thermal Diffusivity, mm2/s 57
12
Thermal Shock Resistance, points 10 to 13
20

Alloy Composition

Aluminum (Al), % 96.6 to 97.8
0
Carbon (C), % 0
0.56 to 0.64
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.1
96.1 to 96.9
Magnesium (Mg), % 2.2 to 2.8
0
Manganese (Mn), % 0 to 0.1
0.75 to 1.0
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0 to 0.080
1.8 to 2.2
Sulfur (S), % 0
0 to 0.040
Vanadium (V), % 0 to 0.050
0
Zinc (Zn), % 0 to 0.050
0
Residuals, % 0 to 0.1
0