MakeItFrom.com
Menu (ESC)

5252 Aluminum vs. Titanium 6-6-2

5252 aluminum belongs to the aluminum alloys classification, while titanium 6-6-2 belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is 5252 aluminum and the bottom bar is titanium 6-6-2.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
120
Elongation at Break, % 4.5 to 11
6.7 to 9.0
Fatigue Strength, MPa 100 to 110
590 to 670
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 25
44
Shear Strength, MPa 140 to 160
670 to 800
Tensile Strength: Ultimate (UTS), MPa 230 to 290
1140 to 1370
Tensile Strength: Yield (Proof), MPa 170 to 240
1040 to 1230

Thermal Properties

Latent Heat of Fusion, J/g 400
400
Maximum Temperature: Mechanical, °C 180
310
Melting Completion (Liquidus), °C 650
1610
Melting Onset (Solidus), °C 610
1560
Specific Heat Capacity, J/kg-K 910
540
Thermal Conductivity, W/m-K 140
5.5
Thermal Expansion, µm/m-K 24
9.4

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
1.1
Electrical Conductivity: Equal Weight (Specific), % IACS 120
2.1

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
40
Density, g/cm3 2.7
4.8
Embodied Carbon, kg CO2/kg material 8.7
29
Embodied Energy, MJ/kg 160
470
Embodied Water, L/kg 1190
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 23
89 to 99
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 51
34
Strength to Weight: Axial, points 23 to 30
66 to 79
Strength to Weight: Bending, points 31 to 36
50 to 57
Thermal Diffusivity, mm2/s 57
2.1
Thermal Shock Resistance, points 10 to 13
75 to 90

Alloy Composition

Aluminum (Al), % 96.6 to 97.8
5.0 to 6.0
Carbon (C), % 0
0 to 0.050
Copper (Cu), % 0 to 0.1
0.35 to 1.0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 0.1
0.35 to 1.0
Magnesium (Mg), % 2.2 to 2.8
0
Manganese (Mn), % 0 to 0.1
0
Molybdenum (Mo), % 0
5.0 to 6.0
Nitrogen (N), % 0
0 to 0.040
Oxygen (O), % 0
0 to 0.2
Silicon (Si), % 0 to 0.080
0
Tin (Sn), % 0
1.5 to 2.5
Titanium (Ti), % 0
82.8 to 87.8
Vanadium (V), % 0 to 0.050
0
Zinc (Zn), % 0 to 0.050
0
Residuals, % 0
0 to 0.4