MakeItFrom.com
Menu (ESC)

5252 Aluminum vs. C61800 Bronze

5252 aluminum belongs to the aluminum alloys classification, while C61800 bronze belongs to the copper alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5252 aluminum and the bottom bar is C61800 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
110
Elongation at Break, % 4.5 to 11
26
Fatigue Strength, MPa 100 to 110
190
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 25
44
Shear Strength, MPa 140 to 160
310
Tensile Strength: Ultimate (UTS), MPa 230 to 290
740
Tensile Strength: Yield (Proof), MPa 170 to 240
310

Thermal Properties

Latent Heat of Fusion, J/g 400
230
Maximum Temperature: Mechanical, °C 180
220
Melting Completion (Liquidus), °C 650
1050
Melting Onset (Solidus), °C 610
1040
Specific Heat Capacity, J/kg-K 910
440
Thermal Conductivity, W/m-K 140
64
Thermal Expansion, µm/m-K 24
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
13
Electrical Conductivity: Equal Weight (Specific), % IACS 120
14

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
28
Density, g/cm3 2.7
8.3
Embodied Carbon, kg CO2/kg material 8.7
3.1
Embodied Energy, MJ/kg 160
52
Embodied Water, L/kg 1190
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 23
150
Resilience: Unit (Modulus of Resilience), kJ/m3 210 to 430
420
Stiffness to Weight: Axial, points 14
7.5
Stiffness to Weight: Bending, points 51
19
Strength to Weight: Axial, points 23 to 30
25
Strength to Weight: Bending, points 31 to 36
22
Thermal Diffusivity, mm2/s 57
18
Thermal Shock Resistance, points 10 to 13
26

Alloy Composition

Aluminum (Al), % 96.6 to 97.8
8.5 to 11
Copper (Cu), % 0 to 0.1
86.9 to 91
Iron (Fe), % 0 to 0.1
0.5 to 1.5
Lead (Pb), % 0
0 to 0.020
Magnesium (Mg), % 2.2 to 2.8
0
Manganese (Mn), % 0 to 0.1
0
Silicon (Si), % 0 to 0.080
0 to 0.1
Vanadium (V), % 0 to 0.050
0
Zinc (Zn), % 0 to 0.050
0 to 0.020
Residuals, % 0
0 to 0.5