MakeItFrom.com
Menu (ESC)

5252 Aluminum vs. C73100 Nickel Silver

5252 aluminum belongs to the aluminum alloys classification, while C73100 nickel silver belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5252 aluminum and the bottom bar is C73100 nickel silver.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
110
Elongation at Break, % 4.5 to 11
3.4 to 8.0
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 25
43
Shear Strength, MPa 140 to 160
260 to 370
Tensile Strength: Ultimate (UTS), MPa 230 to 290
450 to 640
Tensile Strength: Yield (Proof), MPa 170 to 240
420 to 590

Thermal Properties

Latent Heat of Fusion, J/g 400
190
Maximum Temperature: Mechanical, °C 180
170
Melting Completion (Liquidus), °C 650
1030
Melting Onset (Solidus), °C 610
1000
Specific Heat Capacity, J/kg-K 910
390
Thermal Conductivity, W/m-K 140
35
Thermal Expansion, µm/m-K 24
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 120
8.0

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
28
Density, g/cm3 2.7
8.4
Embodied Carbon, kg CO2/kg material 8.7
3.0
Embodied Energy, MJ/kg 160
49
Embodied Water, L/kg 1190
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 23
21 to 35
Resilience: Unit (Modulus of Resilience), kJ/m3 210 to 430
790 to 1560
Stiffness to Weight: Axial, points 14
7.5
Stiffness to Weight: Bending, points 51
19
Strength to Weight: Axial, points 23 to 30
15 to 21
Strength to Weight: Bending, points 31 to 36
15 to 20
Thermal Diffusivity, mm2/s 57
11
Thermal Shock Resistance, points 10 to 13
15 to 21

Alloy Composition

Aluminum (Al), % 96.6 to 97.8
0
Copper (Cu), % 0 to 0.1
70.8 to 78
Iron (Fe), % 0 to 0.1
0 to 0.1
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 2.2 to 2.8
0
Manganese (Mn), % 0 to 0.1
0 to 0.5
Nickel (Ni), % 0
4.0 to 6.0
Silicon (Si), % 0 to 0.080
0
Tin (Sn), % 0
0 to 0.1
Vanadium (V), % 0 to 0.050
0
Zinc (Zn), % 0 to 0.050
18 to 22
Residuals, % 0
0 to 0.5