MakeItFrom.com
Menu (ESC)

5252 Aluminum vs. N08024 Nickel

5252 aluminum belongs to the aluminum alloys classification, while N08024 nickel belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5252 aluminum and the bottom bar is N08024 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 4.5 to 11
34
Fatigue Strength, MPa 100 to 110
200
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 25
79
Shear Strength, MPa 140 to 160
410
Tensile Strength: Ultimate (UTS), MPa 230 to 290
620
Tensile Strength: Yield (Proof), MPa 170 to 240
270

Thermal Properties

Latent Heat of Fusion, J/g 400
310
Maximum Temperature: Mechanical, °C 180
990
Melting Completion (Liquidus), °C 650
1430
Melting Onset (Solidus), °C 610
1380
Specific Heat Capacity, J/kg-K 910
460
Thermal Conductivity, W/m-K 140
12
Thermal Expansion, µm/m-K 24
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
1.6
Electrical Conductivity: Equal Weight (Specific), % IACS 120
1.8

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
41
Density, g/cm3 2.7
8.2
Embodied Carbon, kg CO2/kg material 8.7
7.2
Embodied Energy, MJ/kg 160
99
Embodied Water, L/kg 1190
230

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 23
170
Resilience: Unit (Modulus of Resilience), kJ/m3 210 to 430
180
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
24
Strength to Weight: Axial, points 23 to 30
21
Strength to Weight: Bending, points 31 to 36
20
Thermal Diffusivity, mm2/s 57
3.2
Thermal Shock Resistance, points 10 to 13
15

Alloy Composition

Aluminum (Al), % 96.6 to 97.8
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
22.5 to 25
Copper (Cu), % 0 to 0.1
0.5 to 1.5
Iron (Fe), % 0 to 0.1
26.6 to 38.4
Magnesium (Mg), % 2.2 to 2.8
0
Manganese (Mn), % 0 to 0.1
0 to 1.0
Molybdenum (Mo), % 0
3.5 to 5.0
Nickel (Ni), % 0
35 to 40
Niobium (Nb), % 0
0.15 to 0.35
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0 to 0.080
0 to 0.5
Sulfur (S), % 0
0 to 0.035
Vanadium (V), % 0 to 0.050
0
Zinc (Zn), % 0 to 0.050
0
Residuals, % 0 to 0.1
0