MakeItFrom.com
Menu (ESC)

5252 Aluminum vs. S30615 Stainless Steel

5252 aluminum belongs to the aluminum alloys classification, while S30615 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5252 aluminum and the bottom bar is S30615 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 68 to 75
190
Elastic (Young's, Tensile) Modulus, GPa 68
190
Elongation at Break, % 4.5 to 11
39
Fatigue Strength, MPa 100 to 110
270
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 25
75
Shear Strength, MPa 140 to 160
470
Tensile Strength: Ultimate (UTS), MPa 230 to 290
690
Tensile Strength: Yield (Proof), MPa 170 to 240
310

Thermal Properties

Latent Heat of Fusion, J/g 400
340
Maximum Temperature: Mechanical, °C 180
960
Melting Completion (Liquidus), °C 650
1370
Melting Onset (Solidus), °C 610
1320
Specific Heat Capacity, J/kg-K 910
500
Thermal Conductivity, W/m-K 140
14
Thermal Expansion, µm/m-K 24
16

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
19
Density, g/cm3 2.7
7.6
Embodied Carbon, kg CO2/kg material 8.7
3.7
Embodied Energy, MJ/kg 160
53
Embodied Water, L/kg 1190
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 23
220
Resilience: Unit (Modulus of Resilience), kJ/m3 210 to 430
260
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
25
Strength to Weight: Axial, points 23 to 30
25
Strength to Weight: Bending, points 31 to 36
23
Thermal Diffusivity, mm2/s 57
3.7
Thermal Shock Resistance, points 10 to 13
16

Alloy Composition

Aluminum (Al), % 96.6 to 97.8
0.8 to 1.5
Carbon (C), % 0
0.16 to 0.24
Chromium (Cr), % 0
17 to 19.5
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.1
56.7 to 65.3
Magnesium (Mg), % 2.2 to 2.8
0
Manganese (Mn), % 0 to 0.1
0 to 2.0
Nickel (Ni), % 0
13.5 to 16
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.080
3.2 to 4.0
Sulfur (S), % 0
0 to 0.030
Vanadium (V), % 0 to 0.050
0
Zinc (Zn), % 0 to 0.050
0
Residuals, % 0 to 0.1
0