MakeItFrom.com
Menu (ESC)

5254 Aluminum vs. 2095 Aluminum

Both 5254 aluminum and 2095 aluminum are aluminum alloys. They have a moderately high 94% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 5254 aluminum and the bottom bar is 2095 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
70
Elongation at Break, % 3.4 to 22
8.5
Fatigue Strength, MPa 110 to 160
200
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
26
Shear Strength, MPa 150 to 200
410
Tensile Strength: Ultimate (UTS), MPa 240 to 350
700
Tensile Strength: Yield (Proof), MPa 100 to 270
610

Thermal Properties

Latent Heat of Fusion, J/g 400
390
Maximum Temperature: Mechanical, °C 190
210
Melting Completion (Liquidus), °C 640
660
Melting Onset (Solidus), °C 590
540
Specific Heat Capacity, J/kg-K 900
910
Thermal Conductivity, W/m-K 130
130
Thermal Expansion, µm/m-K 24
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
35
Electrical Conductivity: Equal Weight (Specific), % IACS 110
110

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
31
Density, g/cm3 2.7
3.0
Embodied Carbon, kg CO2/kg material 8.8
8.6
Embodied Energy, MJ/kg 150
160
Embodied Water, L/kg 1180
1470

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11 to 41
57
Resilience: Unit (Modulus of Resilience), kJ/m3 73 to 550
2640
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 51
46
Strength to Weight: Axial, points 25 to 37
65
Strength to Weight: Bending, points 32 to 41
59
Thermal Diffusivity, mm2/s 52
49
Thermal Shock Resistance, points 10 to 16
31

Alloy Composition

Aluminum (Al), % 94.4 to 96.8
91.3 to 94.9
Chromium (Cr), % 0.15 to 0.35
0
Copper (Cu), % 0 to 0.050
3.9 to 4.6
Iron (Fe), % 0 to 0.45
0 to 0.15
Lithium (Li), % 0
0.7 to 1.5
Magnesium (Mg), % 3.1 to 3.9
0.25 to 0.8
Manganese (Mn), % 0 to 0.010
0 to 0.25
Silicon (Si), % 0 to 0.45
0 to 0.12
Silver (Ag), % 0
0.25 to 0.6
Titanium (Ti), % 0 to 0.050
0 to 0.1
Zinc (Zn), % 0 to 0.2
0 to 0.25
Zirconium (Zr), % 0
0.040 to 0.18
Residuals, % 0
0 to 0.15