MakeItFrom.com
Menu (ESC)

5254 Aluminum vs. AWS ER80S-B6

5254 aluminum belongs to the aluminum alloys classification, while AWS ER80S-B6 belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5254 aluminum and the bottom bar is AWS ER80S-B6.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
190
Elongation at Break, % 3.4 to 22
19
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
74
Tensile Strength: Ultimate (UTS), MPa 240 to 350
620
Tensile Strength: Yield (Proof), MPa 100 to 270
540

Thermal Properties

Latent Heat of Fusion, J/g 400
260
Melting Completion (Liquidus), °C 640
1460
Melting Onset (Solidus), °C 590
1410
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 130
40
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
8.2
Electrical Conductivity: Equal Weight (Specific), % IACS 110
9.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
4.7
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.8
1.8
Embodied Energy, MJ/kg 150
24
Embodied Water, L/kg 1180
71

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11 to 41
110
Resilience: Unit (Modulus of Resilience), kJ/m3 73 to 550
750
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
25
Strength to Weight: Axial, points 25 to 37
22
Strength to Weight: Bending, points 32 to 41
21
Thermal Diffusivity, mm2/s 52
11
Thermal Shock Resistance, points 10 to 16
18

Alloy Composition

Aluminum (Al), % 94.4 to 96.8
0
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0.15 to 0.35
4.5 to 6.0
Copper (Cu), % 0 to 0.050
0 to 0.35
Iron (Fe), % 0 to 0.45
90.6 to 94.7
Magnesium (Mg), % 3.1 to 3.9
0
Manganese (Mn), % 0 to 0.010
0.4 to 0.7
Molybdenum (Mo), % 0
0.45 to 0.65
Nickel (Ni), % 0
0 to 0.6
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.45
0 to 0.5
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 0 to 0.050
0
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0
0 to 0.5