MakeItFrom.com
Menu (ESC)

5254 Aluminum vs. EN 1.8912 Steel

5254 aluminum belongs to the aluminum alloys classification, while EN 1.8912 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5254 aluminum and the bottom bar is EN 1.8912 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
190
Elongation at Break, % 3.4 to 22
20
Fatigue Strength, MPa 110 to 160
290
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
73
Shear Strength, MPa 150 to 200
380
Tensile Strength: Ultimate (UTS), MPa 240 to 350
600
Tensile Strength: Yield (Proof), MPa 100 to 270
410

Thermal Properties

Latent Heat of Fusion, J/g 400
250
Maximum Temperature: Mechanical, °C 190
410
Melting Completion (Liquidus), °C 640
1460
Melting Onset (Solidus), °C 590
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 130
46
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 110
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
2.6
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.8
1.8
Embodied Energy, MJ/kg 150
24
Embodied Water, L/kg 1180
51

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11 to 41
110
Resilience: Unit (Modulus of Resilience), kJ/m3 73 to 550
460
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 51
24
Strength to Weight: Axial, points 25 to 37
21
Strength to Weight: Bending, points 32 to 41
20
Thermal Diffusivity, mm2/s 52
12
Thermal Shock Resistance, points 10 to 16
18

Alloy Composition

Aluminum (Al), % 94.4 to 96.8
0 to 0.015
Carbon (C), % 0
0 to 0.22
Chromium (Cr), % 0.15 to 0.35
0 to 0.35
Copper (Cu), % 0 to 0.050
0 to 0.6
Iron (Fe), % 0 to 0.45
95 to 99.05
Magnesium (Mg), % 3.1 to 3.9
0
Manganese (Mn), % 0 to 0.010
1.0 to 1.8
Molybdenum (Mo), % 0
0 to 0.13
Nickel (Ni), % 0
0 to 0.85
Niobium (Nb), % 0
0 to 0.060
Nitrogen (N), % 0
0 to 0.027
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.45
0 to 0.65
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 0 to 0.050
0 to 0.060
Vanadium (V), % 0
0 to 0.22
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.15
0