MakeItFrom.com
Menu (ESC)

5254 Aluminum vs. C64800 Bronze

5254 aluminum belongs to the aluminum alloys classification, while C64800 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5254 aluminum and the bottom bar is C64800 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
120
Elongation at Break, % 3.4 to 22
8.0
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 26
44
Shear Strength, MPa 150 to 200
380
Tensile Strength: Ultimate (UTS), MPa 240 to 350
640
Tensile Strength: Yield (Proof), MPa 100 to 270
630

Thermal Properties

Latent Heat of Fusion, J/g 400
220
Maximum Temperature: Mechanical, °C 190
200
Melting Completion (Liquidus), °C 640
1090
Melting Onset (Solidus), °C 590
1030
Specific Heat Capacity, J/kg-K 900
390
Thermal Conductivity, W/m-K 130
260
Thermal Expansion, µm/m-K 24
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
65
Electrical Conductivity: Equal Weight (Specific), % IACS 110
66

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
33
Density, g/cm3 2.7
8.9
Embodied Carbon, kg CO2/kg material 8.8
2.7
Embodied Energy, MJ/kg 150
43
Embodied Water, L/kg 1180
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11 to 41
51
Resilience: Unit (Modulus of Resilience), kJ/m3 73 to 550
1680
Stiffness to Weight: Axial, points 14
7.4
Stiffness to Weight: Bending, points 51
18
Strength to Weight: Axial, points 25 to 37
20
Strength to Weight: Bending, points 32 to 41
19
Thermal Diffusivity, mm2/s 52
75
Thermal Shock Resistance, points 10 to 16
23

Alloy Composition

Aluminum (Al), % 94.4 to 96.8
0
Chromium (Cr), % 0.15 to 0.35
0 to 0.090
Cobalt (Co), % 0
1.0 to 3.0
Copper (Cu), % 0 to 0.050
92.4 to 98.8
Iron (Fe), % 0 to 0.45
0 to 1.0
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 3.1 to 3.9
0
Manganese (Mn), % 0 to 0.010
0
Nickel (Ni), % 0
0 to 0.5
Phosphorus (P), % 0
0 to 0.5
Silicon (Si), % 0 to 0.45
0.2 to 1.0
Tin (Sn), % 0
0 to 0.5
Titanium (Ti), % 0 to 0.050
0
Zinc (Zn), % 0 to 0.2
0 to 0.5
Residuals, % 0
0 to 0.5