MakeItFrom.com
Menu (ESC)

5383 Aluminum vs. 60Cr-40Ni Alloy

5383 aluminum belongs to the aluminum alloys classification, while 60Cr-40Ni alloy belongs to the otherwise unclassified metals. There are 19 material properties with values for both materials. Properties with values for just one material (13, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5383 aluminum and the bottom bar is 60Cr-40Ni alloy.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
220
Poisson's Ratio 0.33
0.25
Shear Modulus, GPa 26
87
Tensile Strength: Ultimate (UTS), MPa 310 to 370
870
Tensile Strength: Yield (Proof), MPa 150 to 310
660

Thermal Properties

Latent Heat of Fusion, J/g 390
370
Specific Heat Capacity, J/kg-K 900
490
Thermal Expansion, µm/m-K 24
16

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
49
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 9.0
7.4
Embodied Energy, MJ/kg 160
110
Embodied Water, L/kg 1170
380

Common Calculations

Resilience: Unit (Modulus of Resilience), kJ/m3 170 to 690
1000
Stiffness to Weight: Axial, points 14
16
Stiffness to Weight: Bending, points 50
26
Strength to Weight: Axial, points 32 to 38
31
Strength to Weight: Bending, points 38 to 42
26
Thermal Shock Resistance, points 14 to 16
18

Alloy Composition

Aluminum (Al), % 92 to 95.3
0 to 0.25
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0 to 0.25
58 to 62
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 0 to 0.25
0 to 1.0
Magnesium (Mg), % 4.0 to 5.2
0
Manganese (Mn), % 0.7 to 1.0
0 to 0.3
Nickel (Ni), % 0
34.5 to 42
Nitrogen (N), % 0
0 to 0.3
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.25
0 to 1.0
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0 to 0.15
0 to 0.5
Zinc (Zn), % 0 to 0.4
0
Zirconium (Zr), % 0 to 0.2
0
Residuals, % 0 to 0.15
0