MakeItFrom.com
Menu (ESC)

5383 Aluminum vs. AWS ERNiCr-3

5383 aluminum belongs to the aluminum alloys classification, while AWS ERNiCr-3 belongs to the nickel alloys. There are 20 material properties with values for both materials. Properties with values for just one material (12, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5383 aluminum and the bottom bar is AWS ERNiCr-3.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
190
Elongation at Break, % 6.7 to 15
34
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
75
Tensile Strength: Ultimate (UTS), MPa 310 to 370
630

Thermal Properties

Latent Heat of Fusion, J/g 390
320
Melting Completion (Liquidus), °C 650
1380
Melting Onset (Solidus), °C 540
1330
Specific Heat Capacity, J/kg-K 900
460
Thermal Expansion, µm/m-K 24
13

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
70
Density, g/cm3 2.7
8.4
Embodied Carbon, kg CO2/kg material 9.0
11
Embodied Energy, MJ/kg 160
160
Embodied Water, L/kg 1170
280

Common Calculations

Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
23
Strength to Weight: Axial, points 32 to 38
21
Strength to Weight: Bending, points 38 to 42
19
Thermal Shock Resistance, points 14 to 16
18

Alloy Composition

Aluminum (Al), % 92 to 95.3
0
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0 to 0.25
18 to 22
Cobalt (Co), % 0
0 to 0.12
Copper (Cu), % 0 to 0.2
0 to 0.5
Iron (Fe), % 0 to 0.25
0 to 3.0
Magnesium (Mg), % 4.0 to 5.2
0
Manganese (Mn), % 0.7 to 1.0
2.5 to 3.5
Nickel (Ni), % 0
67 to 77.5
Niobium (Nb), % 0
2.0 to 3.0
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.25
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.15
0 to 0.75
Zinc (Zn), % 0 to 0.4
0
Zirconium (Zr), % 0 to 0.2
0
Residuals, % 0
0 to 0.5