MakeItFrom.com
Menu (ESC)

5383 Aluminum vs. EN 1.3518 Steel

5383 aluminum belongs to the aluminum alloys classification, while EN 1.3518 steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5383 aluminum and the bottom bar is EN 1.3518 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 85 to 110
190
Elastic (Young's, Tensile) Modulus, GPa 68
190
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
72
Tensile Strength: Ultimate (UTS), MPa 310 to 370
630

Thermal Properties

Latent Heat of Fusion, J/g 390
260
Maximum Temperature: Mechanical, °C 200
420
Melting Completion (Liquidus), °C 650
1440
Melting Onset (Solidus), °C 540
1400
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 130
43
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 97
8.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
2.4
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 9.0
1.5
Embodied Energy, MJ/kg 160
20
Embodied Water, L/kg 1170
51

Common Calculations

Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 32 to 38
23
Strength to Weight: Bending, points 38 to 42
21
Thermal Diffusivity, mm2/s 51
12
Thermal Shock Resistance, points 14 to 16
19

Alloy Composition

Aluminum (Al), % 92 to 95.3
0 to 0.050
Carbon (C), % 0
0.93 to 1.1
Chromium (Cr), % 0 to 0.25
0.9 to 1.2
Copper (Cu), % 0 to 0.2
0 to 0.3
Iron (Fe), % 0 to 0.25
96.3 to 97.8
Magnesium (Mg), % 4.0 to 5.2
0
Manganese (Mn), % 0.7 to 1.0
0.9 to 1.2
Molybdenum (Mo), % 0
0 to 0.1
Oxygen (O), % 0
0 to 0.0015
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.25
0.45 to 0.75
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.4
0
Zirconium (Zr), % 0 to 0.2
0
Residuals, % 0 to 0.15
0