MakeItFrom.com
Menu (ESC)

5383 Aluminum vs. EN 1.4487 Stainless Steel

5383 aluminum belongs to the aluminum alloys classification, while EN 1.4487 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5383 aluminum and the bottom bar is EN 1.4487 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 6.7 to 15
34
Fatigue Strength, MPa 130 to 200
210
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
77
Tensile Strength: Ultimate (UTS), MPa 310 to 370
560
Tensile Strength: Yield (Proof), MPa 150 to 310
260

Thermal Properties

Latent Heat of Fusion, J/g 390
290
Maximum Temperature: Corrosion, °C 65
420
Maximum Temperature: Mechanical, °C 200
960
Melting Completion (Liquidus), °C 650
1420
Melting Onset (Solidus), °C 540
1380
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 130
16
Thermal Expansion, µm/m-K 24
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 97
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
16
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 9.0
3.1
Embodied Energy, MJ/kg 160
44
Embodied Water, L/kg 1170
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 23 to 40
160
Resilience: Unit (Modulus of Resilience), kJ/m3 170 to 690
170
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 32 to 38
20
Strength to Weight: Bending, points 38 to 42
19
Thermal Diffusivity, mm2/s 51
4.2
Thermal Shock Resistance, points 14 to 16
16

Alloy Composition

Aluminum (Al), % 92 to 95.3
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0 to 0.25
18 to 20
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 0 to 0.25
64.7 to 72.9
Magnesium (Mg), % 4.0 to 5.2
0
Manganese (Mn), % 0.7 to 1.0
0 to 1.5
Nickel (Ni), % 0
9.0 to 12
Nitrogen (N), % 0
0.12 to 0.2
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.25
0 to 1.5
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.4
0
Zirconium (Zr), % 0 to 0.2
0
Residuals, % 0 to 0.15
0