MakeItFrom.com
Menu (ESC)

5383 Aluminum vs. CC753S Brass

5383 aluminum belongs to the aluminum alloys classification, while CC753S brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5383 aluminum and the bottom bar is CC753S brass.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 85 to 110
100
Elastic (Young's, Tensile) Modulus, GPa 68
100
Elongation at Break, % 6.7 to 15
17
Poisson's Ratio 0.33
0.31
Shear Modulus, GPa 26
40
Tensile Strength: Ultimate (UTS), MPa 310 to 370
340
Tensile Strength: Yield (Proof), MPa 150 to 310
170

Thermal Properties

Latent Heat of Fusion, J/g 390
170
Maximum Temperature: Mechanical, °C 200
120
Melting Completion (Liquidus), °C 650
820
Melting Onset (Solidus), °C 540
780
Specific Heat Capacity, J/kg-K 900
390
Thermal Conductivity, W/m-K 130
99
Thermal Expansion, µm/m-K 24
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
26
Electrical Conductivity: Equal Weight (Specific), % IACS 97
29

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
23
Density, g/cm3 2.7
8.1
Embodied Carbon, kg CO2/kg material 9.0
2.8
Embodied Energy, MJ/kg 160
47
Embodied Water, L/kg 1170
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 23 to 40
47
Resilience: Unit (Modulus of Resilience), kJ/m3 170 to 690
140
Stiffness to Weight: Axial, points 14
7.1
Stiffness to Weight: Bending, points 50
19
Strength to Weight: Axial, points 32 to 38
12
Strength to Weight: Bending, points 38 to 42
13
Thermal Diffusivity, mm2/s 51
32
Thermal Shock Resistance, points 14 to 16
11

Alloy Composition

Aluminum (Al), % 92 to 95.3
0.4 to 0.8
Antimony (Sb), % 0
0 to 0.050
Chromium (Cr), % 0 to 0.25
0
Copper (Cu), % 0 to 0.2
56.8 to 60.5
Iron (Fe), % 0 to 0.25
0.5 to 0.8
Lead (Pb), % 0
1.8 to 2.5
Magnesium (Mg), % 4.0 to 5.2
0
Manganese (Mn), % 0.7 to 1.0
0 to 0.2
Nickel (Ni), % 0
0.5 to 1.2
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.25
0 to 0.050
Tin (Sn), % 0
0 to 0.8
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.4
33.1 to 40
Zirconium (Zr), % 0 to 0.2
0
Residuals, % 0 to 0.15
0