MakeItFrom.com
Menu (ESC)

5383 Aluminum vs. SAE-AISI 1006 Steel

5383 aluminum belongs to the aluminum alloys classification, while SAE-AISI 1006 steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5383 aluminum and the bottom bar is SAE-AISI 1006 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 85 to 110
94 to 100
Elastic (Young's, Tensile) Modulus, GPa 68
190
Elongation at Break, % 6.7 to 15
22 to 33
Fatigue Strength, MPa 130 to 200
140 to 210
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
73
Shear Strength, MPa 190 to 220
230
Tensile Strength: Ultimate (UTS), MPa 310 to 370
340 to 370
Tensile Strength: Yield (Proof), MPa 150 to 310
180 to 300

Thermal Properties

Latent Heat of Fusion, J/g 390
250
Maximum Temperature: Mechanical, °C 200
400
Melting Completion (Liquidus), °C 650
1470
Melting Onset (Solidus), °C 540
1430
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 130
53
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
6.9
Electrical Conductivity: Equal Weight (Specific), % IACS 97
7.9

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
1.8
Density, g/cm3 2.7
7.9
Embodied Carbon, kg CO2/kg material 9.0
1.4
Embodied Energy, MJ/kg 160
18
Embodied Water, L/kg 1170
45

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 23 to 40
75 to 95
Resilience: Unit (Modulus of Resilience), kJ/m3 170 to 690
86 to 240
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 32 to 38
12 to 13
Strength to Weight: Bending, points 38 to 42
14 to 15
Thermal Diffusivity, mm2/s 51
14
Thermal Shock Resistance, points 14 to 16
10 to 11

Alloy Composition

Aluminum (Al), % 92 to 95.3
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0 to 0.25
0
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 0 to 0.25
99.43 to 99.75
Magnesium (Mg), % 4.0 to 5.2
0
Manganese (Mn), % 0.7 to 1.0
0.25 to 0.4
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.25
0
Sulfur (S), % 0
0 to 0.050
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.4
0
Zirconium (Zr), % 0 to 0.2
0
Residuals, % 0 to 0.15
0