MakeItFrom.com
Menu (ESC)

5383 Aluminum vs. C72200 Copper-nickel

5383 aluminum belongs to the aluminum alloys classification, while C72200 copper-nickel belongs to the copper alloys. There are 24 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5383 aluminum and the bottom bar is C72200 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
130
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
48
Tensile Strength: Ultimate (UTS), MPa 310 to 370
350 to 580

Thermal Properties

Latent Heat of Fusion, J/g 390
220
Maximum Temperature: Mechanical, °C 200
230
Melting Completion (Liquidus), °C 650
1180
Melting Onset (Solidus), °C 540
1120
Specific Heat Capacity, J/kg-K 900
400
Thermal Conductivity, W/m-K 130
34
Thermal Expansion, µm/m-K 24
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
6.5
Electrical Conductivity: Equal Weight (Specific), % IACS 97
6.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
36
Density, g/cm3 2.7
8.9
Embodied Carbon, kg CO2/kg material 9.0
3.9
Embodied Energy, MJ/kg 160
59
Embodied Water, L/kg 1170
300

Common Calculations

Stiffness to Weight: Axial, points 14
8.0
Stiffness to Weight: Bending, points 50
19
Strength to Weight: Axial, points 32 to 38
11 to 18
Strength to Weight: Bending, points 38 to 42
12 to 17
Thermal Diffusivity, mm2/s 51
9.6
Thermal Shock Resistance, points 14 to 16
12 to 20

Alloy Composition

Aluminum (Al), % 92 to 95.3
0
Chromium (Cr), % 0 to 0.25
0.3 to 0.7
Copper (Cu), % 0 to 0.2
78.1 to 84.2
Iron (Fe), % 0 to 0.25
0.5 to 1.0
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 4.0 to 5.2
0
Manganese (Mn), % 0.7 to 1.0
0 to 1.0
Nickel (Ni), % 0
15 to 18
Silicon (Si), % 0 to 0.25
0
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.4
0 to 1.0
Zirconium (Zr), % 0 to 0.2
0
Residuals, % 0
0 to 0.2