MakeItFrom.com
Menu (ESC)

5383 Aluminum vs. C74500 Nickel Silver

5383 aluminum belongs to the aluminum alloys classification, while C74500 nickel silver belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5383 aluminum and the bottom bar is C74500 nickel silver.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
120
Elongation at Break, % 6.7 to 15
3.0 to 24
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 26
44
Shear Strength, MPa 190 to 220
310 to 380
Tensile Strength: Ultimate (UTS), MPa 310 to 370
390 to 700
Tensile Strength: Yield (Proof), MPa 150 to 310
380 to 600

Thermal Properties

Latent Heat of Fusion, J/g 390
190
Maximum Temperature: Mechanical, °C 200
170
Melting Completion (Liquidus), °C 650
1020
Melting Onset (Solidus), °C 540
970
Specific Heat Capacity, J/kg-K 900
390
Thermal Conductivity, W/m-K 130
45
Thermal Expansion, µm/m-K 24
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
9.0
Electrical Conductivity: Equal Weight (Specific), % IACS 97
9.7

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
29
Density, g/cm3 2.7
8.3
Embodied Carbon, kg CO2/kg material 9.0
3.4
Embodied Energy, MJ/kg 160
54
Embodied Water, L/kg 1170
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 23 to 40
12 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 170 to 690
620 to 1540
Stiffness to Weight: Axial, points 14
7.7
Stiffness to Weight: Bending, points 50
19
Strength to Weight: Axial, points 32 to 38
13 to 23
Strength to Weight: Bending, points 38 to 42
14 to 21
Thermal Diffusivity, mm2/s 51
14
Thermal Shock Resistance, points 14 to 16
13 to 23

Alloy Composition

Aluminum (Al), % 92 to 95.3
0
Chromium (Cr), % 0 to 0.25
0
Copper (Cu), % 0 to 0.2
63.5 to 66.5
Iron (Fe), % 0 to 0.25
0 to 0.25
Lead (Pb), % 0
0 to 0.1
Magnesium (Mg), % 4.0 to 5.2
0
Manganese (Mn), % 0.7 to 1.0
0 to 0.5
Nickel (Ni), % 0
9.0 to 11
Silicon (Si), % 0 to 0.25
0
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.4
21.2 to 27.5
Zirconium (Zr), % 0 to 0.2
0
Residuals, % 0
0 to 0.5