MakeItFrom.com
Menu (ESC)

5383 Aluminum vs. N12160 Nickel

5383 aluminum belongs to the aluminum alloys classification, while N12160 nickel belongs to the nickel alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5383 aluminum and the bottom bar is N12160 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
210
Elongation at Break, % 6.7 to 15
45
Fatigue Strength, MPa 130 to 200
230
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
80
Shear Strength, MPa 190 to 220
500
Tensile Strength: Ultimate (UTS), MPa 310 to 370
710
Tensile Strength: Yield (Proof), MPa 150 to 310
270

Thermal Properties

Latent Heat of Fusion, J/g 390
360
Maximum Temperature: Mechanical, °C 200
1060
Melting Completion (Liquidus), °C 650
1330
Melting Onset (Solidus), °C 540
1280
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 130
11
Thermal Expansion, µm/m-K 24
13

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
90
Density, g/cm3 2.7
8.2
Embodied Carbon, kg CO2/kg material 9.0
8.5
Embodied Energy, MJ/kg 160
120
Embodied Water, L/kg 1170
400

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 23 to 40
260
Resilience: Unit (Modulus of Resilience), kJ/m3 170 to 690
180
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 32 to 38
24
Strength to Weight: Bending, points 38 to 42
22
Thermal Diffusivity, mm2/s 51
2.8
Thermal Shock Resistance, points 14 to 16
19

Alloy Composition

Aluminum (Al), % 92 to 95.3
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0 to 0.25
26 to 30
Cobalt (Co), % 0
27 to 33
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 0 to 0.25
0 to 3.5
Magnesium (Mg), % 4.0 to 5.2
0
Manganese (Mn), % 0.7 to 1.0
0 to 1.5
Molybdenum (Mo), % 0
0 to 1.0
Nickel (Ni), % 0
25 to 44.4
Niobium (Nb), % 0
0 to 1.0
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.25
2.4 to 3.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.15
0.2 to 0.8
Tungsten (W), % 0
0 to 1.0
Zinc (Zn), % 0 to 0.4
0
Zirconium (Zr), % 0 to 0.2
0
Residuals, % 0 to 0.15
0