MakeItFrom.com
Menu (ESC)

5383 Aluminum vs. S33228 Stainless Steel

5383 aluminum belongs to the aluminum alloys classification, while S33228 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5383 aluminum and the bottom bar is S33228 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 85 to 110
190
Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 6.7 to 15
34
Fatigue Strength, MPa 130 to 200
170
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
79
Shear Strength, MPa 190 to 220
380
Tensile Strength: Ultimate (UTS), MPa 310 to 370
570
Tensile Strength: Yield (Proof), MPa 150 to 310
210

Thermal Properties

Latent Heat of Fusion, J/g 390
310
Maximum Temperature: Corrosion, °C 65
560
Maximum Temperature: Mechanical, °C 200
1100
Melting Completion (Liquidus), °C 650
1410
Melting Onset (Solidus), °C 540
1360
Specific Heat Capacity, J/kg-K 900
470
Thermal Expansion, µm/m-K 24
16

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
37
Density, g/cm3 2.7
8.0
Embodied Carbon, kg CO2/kg material 9.0
6.2
Embodied Energy, MJ/kg 160
89
Embodied Water, L/kg 1170
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 23 to 40
150
Resilience: Unit (Modulus of Resilience), kJ/m3 170 to 690
110
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 32 to 38
20
Strength to Weight: Bending, points 38 to 42
19
Thermal Shock Resistance, points 14 to 16
13

Alloy Composition

Aluminum (Al), % 92 to 95.3
0 to 0.025
Carbon (C), % 0
0.040 to 0.080
Cerium (Ce), % 0
0.050 to 0.1
Chromium (Cr), % 0 to 0.25
26 to 28
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 0 to 0.25
36.5 to 42.3
Magnesium (Mg), % 4.0 to 5.2
0
Manganese (Mn), % 0.7 to 1.0
0 to 1.0
Nickel (Ni), % 0
31 to 33
Niobium (Nb), % 0
0.6 to 1.0
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.25
0 to 0.3
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.4
0
Zirconium (Zr), % 0 to 0.2
0
Residuals, % 0 to 0.15
0