MakeItFrom.com
Menu (ESC)

5449 Aluminum vs. EN 1.4855 Stainless Steel

5449 aluminum belongs to the aluminum alloys classification, while EN 1.4855 stainless steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5449 aluminum and the bottom bar is EN 1.4855 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
200
Elongation at Break, % 4.0 to 17
4.6
Fatigue Strength, MPa 78 to 120
120
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
77
Tensile Strength: Ultimate (UTS), MPa 210 to 330
500
Tensile Strength: Yield (Proof), MPa 91 to 260
250

Thermal Properties

Latent Heat of Fusion, J/g 400
320
Maximum Temperature: Mechanical, °C 190
1050
Melting Completion (Liquidus), °C 650
1400
Melting Onset (Solidus), °C 590
1350
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 140
14
Thermal Expansion, µm/m-K 23
16

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
34
Density, g/cm3 2.8
7.8
Embodied Carbon, kg CO2/kg material 8.5
5.9
Embodied Energy, MJ/kg 150
85
Embodied Water, L/kg 1180
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 29
19
Resilience: Unit (Modulus of Resilience), kJ/m3 60 to 480
160
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 22 to 33
18
Strength to Weight: Bending, points 29 to 39
18
Thermal Diffusivity, mm2/s 56
3.7
Thermal Shock Resistance, points 9.4 to 15
11

Alloy Composition

Aluminum (Al), % 94.1 to 97.8
0
Carbon (C), % 0
0.3 to 0.5
Chromium (Cr), % 0 to 0.3
23 to 25
Copper (Cu), % 0 to 0.3
0
Iron (Fe), % 0 to 0.7
42.6 to 51.9
Magnesium (Mg), % 1.6 to 2.6
0
Manganese (Mn), % 0.6 to 1.1
0 to 2.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
23 to 25
Niobium (Nb), % 0
0.8 to 1.8
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.4
1.0 to 2.5
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.15
0