MakeItFrom.com
Menu (ESC)

5449 Aluminum vs. Grade C-6 Titanium

5449 aluminum belongs to the aluminum alloys classification, while grade C-6 titanium belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is 5449 aluminum and the bottom bar is grade C-6 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
100
Elongation at Break, % 4.0 to 17
9.0
Fatigue Strength, MPa 78 to 120
460
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 26
39
Tensile Strength: Ultimate (UTS), MPa 210 to 330
890
Tensile Strength: Yield (Proof), MPa 91 to 260
830

Thermal Properties

Latent Heat of Fusion, J/g 400
410
Maximum Temperature: Mechanical, °C 190
310
Melting Completion (Liquidus), °C 650
1580
Melting Onset (Solidus), °C 590
1530
Specific Heat Capacity, J/kg-K 900
550
Thermal Conductivity, W/m-K 140
7.8
Thermal Expansion, µm/m-K 23
9.8

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
1.2
Electrical Conductivity: Equal Weight (Specific), % IACS 110
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
36
Density, g/cm3 2.8
4.5
Embodied Carbon, kg CO2/kg material 8.5
30
Embodied Energy, MJ/kg 150
480
Embodied Water, L/kg 1180
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 29
78
Resilience: Unit (Modulus of Resilience), kJ/m3 60 to 480
3300
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
35
Strength to Weight: Axial, points 22 to 33
55
Strength to Weight: Bending, points 29 to 39
46
Thermal Diffusivity, mm2/s 56
3.2
Thermal Shock Resistance, points 9.4 to 15
63

Alloy Composition

Aluminum (Al), % 94.1 to 97.8
4.0 to 6.0
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0 to 0.3
0
Copper (Cu), % 0 to 0.3
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 0.7
0 to 0.5
Magnesium (Mg), % 1.6 to 2.6
0
Manganese (Mn), % 0.6 to 1.1
0
Nickel (Ni), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.2
Silicon (Si), % 0 to 0.4
0
Tin (Sn), % 0
2.0 to 3.0
Titanium (Ti), % 0 to 0.1
89.7 to 94
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0
0 to 0.4