MakeItFrom.com
Menu (ESC)

5449 Aluminum vs. Nickel 22

5449 aluminum belongs to the aluminum alloys classification, while nickel 22 belongs to the nickel alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5449 aluminum and the bottom bar is nickel 22.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
220
Elongation at Break, % 4.0 to 17
49
Fatigue Strength, MPa 78 to 120
330
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
84
Shear Strength, MPa 130 to 190
560
Tensile Strength: Ultimate (UTS), MPa 210 to 330
790
Tensile Strength: Yield (Proof), MPa 91 to 260
360

Thermal Properties

Latent Heat of Fusion, J/g 400
320
Maximum Temperature: Mechanical, °C 190
990
Melting Completion (Liquidus), °C 650
1390
Melting Onset (Solidus), °C 590
1360
Specific Heat Capacity, J/kg-K 900
430
Thermal Conductivity, W/m-K 140
10
Thermal Expansion, µm/m-K 23
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 110
1.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
70
Density, g/cm3 2.8
8.9
Embodied Carbon, kg CO2/kg material 8.5
12
Embodied Energy, MJ/kg 150
170
Embodied Water, L/kg 1180
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 29
320
Resilience: Unit (Modulus of Resilience), kJ/m3 60 to 480
300
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
22
Strength to Weight: Axial, points 22 to 33
25
Strength to Weight: Bending, points 29 to 39
21
Thermal Diffusivity, mm2/s 56
2.7
Thermal Shock Resistance, points 9.4 to 15
24

Alloy Composition

Aluminum (Al), % 94.1 to 97.8
0
Carbon (C), % 0
0 to 0.015
Chromium (Cr), % 0 to 0.3
20 to 22.5
Cobalt (Co), % 0
0 to 2.5
Copper (Cu), % 0 to 0.3
0
Iron (Fe), % 0 to 0.7
2.0 to 6.0
Magnesium (Mg), % 1.6 to 2.6
0
Manganese (Mn), % 0.6 to 1.1
0 to 0.015
Molybdenum (Mo), % 0
12.5 to 14.5
Nickel (Ni), % 0
50.8 to 63
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.4
0 to 0.080
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0 to 0.1
0
Tungsten (W), % 0
2.5 to 3.5
Vanadium (V), % 0
0 to 0.35
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.15
0