MakeItFrom.com
Menu (ESC)

5449 Aluminum vs. N06255 Nickel

5449 aluminum belongs to the aluminum alloys classification, while N06255 nickel belongs to the nickel alloys. There are 26 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5449 aluminum and the bottom bar is N06255 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
210
Elongation at Break, % 4.0 to 17
45
Fatigue Strength, MPa 78 to 120
210
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
81
Shear Strength, MPa 130 to 190
460
Tensile Strength: Ultimate (UTS), MPa 210 to 330
660
Tensile Strength: Yield (Proof), MPa 91 to 260
250

Thermal Properties

Latent Heat of Fusion, J/g 400
320
Maximum Temperature: Mechanical, °C 190
1000
Melting Completion (Liquidus), °C 650
1470
Melting Onset (Solidus), °C 590
1420
Specific Heat Capacity, J/kg-K 900
450
Thermal Expansion, µm/m-K 23
13

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
55
Density, g/cm3 2.8
8.5
Embodied Carbon, kg CO2/kg material 8.5
9.4
Embodied Energy, MJ/kg 150
130
Embodied Water, L/kg 1180
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 29
230
Resilience: Unit (Modulus of Resilience), kJ/m3 60 to 480
150
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
23
Strength to Weight: Axial, points 22 to 33
22
Strength to Weight: Bending, points 29 to 39
20
Thermal Shock Resistance, points 9.4 to 15
17

Alloy Composition

Aluminum (Al), % 94.1 to 97.8
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0 to 0.3
23 to 26
Copper (Cu), % 0 to 0.3
0 to 1.2
Iron (Fe), % 0 to 0.7
6.0 to 24
Magnesium (Mg), % 1.6 to 2.6
0
Manganese (Mn), % 0.6 to 1.1
0 to 1.0
Molybdenum (Mo), % 0
6.0 to 9.0
Nickel (Ni), % 0
47 to 52
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.4
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.1
0 to 0.69
Tungsten (W), % 0
0 to 3.0
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.15
0