MakeItFrom.com
Menu (ESC)

5454 Aluminum vs. 2124 Aluminum

Both 5454 aluminum and 2124 aluminum are aluminum alloys. They have a very high 96% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 5454 aluminum and the bottom bar is 2124 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
71
Elongation at Break, % 2.3 to 18
5.7
Fatigue Strength, MPa 83 to 160
130
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
27
Shear Strength, MPa 140 to 200
280
Tensile Strength: Ultimate (UTS), MPa 230 to 350
490
Tensile Strength: Yield (Proof), MPa 97 to 290
430

Thermal Properties

Latent Heat of Fusion, J/g 400
390
Maximum Temperature: Mechanical, °C 190
190
Melting Completion (Liquidus), °C 650
640
Melting Onset (Solidus), °C 600
500
Specific Heat Capacity, J/kg-K 900
880
Thermal Conductivity, W/m-K 130
150
Thermal Expansion, µm/m-K 24
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
38
Electrical Conductivity: Equal Weight (Specific), % IACS 110
110

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
10
Density, g/cm3 2.7
3.0
Embodied Carbon, kg CO2/kg material 8.6
8.2
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1180
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.3 to 34
27
Resilience: Unit (Modulus of Resilience), kJ/m3 68 to 590
1290
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
46
Strength to Weight: Axial, points 23 to 36
45
Strength to Weight: Bending, points 30 to 41
46
Thermal Diffusivity, mm2/s 55
58
Thermal Shock Resistance, points 10 to 16
21

Alloy Composition

Aluminum (Al), % 94.5 to 97.1
91.3 to 94.7
Chromium (Cr), % 0.050 to 0.2
0 to 0.1
Copper (Cu), % 0 to 0.1
3.8 to 4.9
Iron (Fe), % 0 to 0.4
0 to 0.3
Magnesium (Mg), % 2.4 to 3.0
1.2 to 1.8
Manganese (Mn), % 0.5 to 1.0
0.3 to 0.9
Silicon (Si), % 0 to 0.25
0 to 0.2
Titanium (Ti), % 0 to 0.2
0 to 0.15
Zinc (Zn), % 0 to 0.25
0 to 0.25
Residuals, % 0
0 to 0.15