MakeItFrom.com
Menu (ESC)

5454 Aluminum vs. AISI 420F Stainless Steel

5454 aluminum belongs to the aluminum alloys classification, while AISI 420F stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5454 aluminum and the bottom bar is AISI 420F stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 61 to 93
230
Elastic (Young's, Tensile) Modulus, GPa 69
190
Elongation at Break, % 2.3 to 18
18
Fatigue Strength, MPa 83 to 160
270
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
76
Shear Strength, MPa 140 to 200
460
Tensile Strength: Ultimate (UTS), MPa 230 to 350
740
Tensile Strength: Yield (Proof), MPa 97 to 290
430

Thermal Properties

Latent Heat of Fusion, J/g 400
270
Maximum Temperature: Mechanical, °C 190
760
Melting Completion (Liquidus), °C 650
1440
Melting Onset (Solidus), °C 600
1390
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 130
25
Thermal Expansion, µm/m-K 24
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
3.1
Electrical Conductivity: Equal Weight (Specific), % IACS 110
3.7

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
7.0
Density, g/cm3 2.7
7.7
Embodied Carbon, kg CO2/kg material 8.6
2.0
Embodied Energy, MJ/kg 150
28
Embodied Water, L/kg 1180
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.3 to 34
120
Resilience: Unit (Modulus of Resilience), kJ/m3 68 to 590
480
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 23 to 36
27
Strength to Weight: Bending, points 30 to 41
23
Thermal Diffusivity, mm2/s 55
6.8
Thermal Shock Resistance, points 10 to 16
27

Alloy Composition

Aluminum (Al), % 94.5 to 97.1
0
Carbon (C), % 0
0.3 to 0.4
Chromium (Cr), % 0.050 to 0.2
12 to 14
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.4
82.4 to 87.6
Magnesium (Mg), % 2.4 to 3.0
0
Manganese (Mn), % 0.5 to 1.0
0 to 1.3
Molybdenum (Mo), % 0
0 to 0.5
Phosphorus (P), % 0
0 to 0.060
Silicon (Si), % 0 to 0.25
0 to 1.0
Sulfur (S), % 0
0.15 to 0.35
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0