MakeItFrom.com
Menu (ESC)

5454 Aluminum vs. EN 1.0456 Steel

5454 aluminum belongs to the aluminum alloys classification, while EN 1.0456 steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5454 aluminum and the bottom bar is EN 1.0456 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 61 to 93
120 to 130
Elastic (Young's, Tensile) Modulus, GPa 69
190
Elongation at Break, % 2.3 to 18
24 to 26
Fatigue Strength, MPa 83 to 160
210 to 220
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
73
Shear Strength, MPa 140 to 200
270 to 280
Tensile Strength: Ultimate (UTS), MPa 230 to 350
420 to 450
Tensile Strength: Yield (Proof), MPa 97 to 290
290 to 300

Thermal Properties

Latent Heat of Fusion, J/g 400
250
Maximum Temperature: Mechanical, °C 190
400
Melting Completion (Liquidus), °C 650
1460
Melting Onset (Solidus), °C 600
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 130
48
Thermal Expansion, µm/m-K 24
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 110
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
2.2
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.6
1.5
Embodied Energy, MJ/kg 150
20
Embodied Water, L/kg 1180
49

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.3 to 34
93 to 99
Resilience: Unit (Modulus of Resilience), kJ/m3 68 to 590
220 to 230
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 23 to 36
15 to 16
Strength to Weight: Bending, points 30 to 41
16 to 17
Thermal Diffusivity, mm2/s 55
13
Thermal Shock Resistance, points 10 to 16
13 to 14

Alloy Composition

Aluminum (Al), % 94.5 to 97.1
0.020 to 0.060
Carbon (C), % 0
0 to 0.2
Chromium (Cr), % 0.050 to 0.2
0 to 0.3
Copper (Cu), % 0 to 0.1
0 to 0.35
Iron (Fe), % 0 to 0.4
96.7 to 99.48
Magnesium (Mg), % 2.4 to 3.0
0
Manganese (Mn), % 0.5 to 1.0
0.5 to 1.4
Molybdenum (Mo), % 0
0 to 0.1
Nickel (Ni), % 0
0 to 0.3
Niobium (Nb), % 0
0 to 0.050
Nitrogen (N), % 0
0 to 0.015
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0 to 0.25
0 to 0.4
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.2
0 to 0.030
Vanadium (V), % 0
0 to 0.050
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0