MakeItFrom.com
Menu (ESC)

5454 Aluminum vs. EN 1.0553 Steel

5454 aluminum belongs to the aluminum alloys classification, while EN 1.0553 steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5454 aluminum and the bottom bar is EN 1.0553 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 61 to 93
150
Elastic (Young's, Tensile) Modulus, GPa 69
190
Elongation at Break, % 2.3 to 18
20
Fatigue Strength, MPa 83 to 160
230
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
73
Shear Strength, MPa 140 to 200
330
Tensile Strength: Ultimate (UTS), MPa 230 to 350
530
Tensile Strength: Yield (Proof), MPa 97 to 290
330

Thermal Properties

Latent Heat of Fusion, J/g 400
250
Maximum Temperature: Mechanical, °C 190
400
Melting Completion (Liquidus), °C 650
1460
Melting Onset (Solidus), °C 600
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 130
51
Thermal Expansion, µm/m-K 24
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 110
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
1.9
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.6
1.4
Embodied Energy, MJ/kg 150
19
Embodied Water, L/kg 1180
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.3 to 34
93
Resilience: Unit (Modulus of Resilience), kJ/m3 68 to 590
290
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 23 to 36
19
Strength to Weight: Bending, points 30 to 41
18
Thermal Diffusivity, mm2/s 55
14
Thermal Shock Resistance, points 10 to 16
17

Alloy Composition

Aluminum (Al), % 94.5 to 97.1
0
Carbon (C), % 0
0 to 0.24
Chromium (Cr), % 0.050 to 0.2
0
Copper (Cu), % 0 to 0.1
0 to 0.6
Iron (Fe), % 0 to 0.4
96.8 to 100
Magnesium (Mg), % 2.4 to 3.0
0
Manganese (Mn), % 0.5 to 1.0
0 to 1.7
Nitrogen (N), % 0
0 to 0.014
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.25
0 to 0.6
Sulfur (S), % 0
0 to 0.040
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0