MakeItFrom.com
Menu (ESC)

5454 Aluminum vs. EN 1.4971 Stainless Steel

5454 aluminum belongs to the aluminum alloys classification, while EN 1.4971 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5454 aluminum and the bottom bar is EN 1.4971 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 61 to 93
240
Elastic (Young's, Tensile) Modulus, GPa 69
210
Elongation at Break, % 2.3 to 18
34
Fatigue Strength, MPa 83 to 160
270
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
81
Shear Strength, MPa 140 to 200
530
Tensile Strength: Ultimate (UTS), MPa 230 to 350
800
Tensile Strength: Yield (Proof), MPa 97 to 290
340

Thermal Properties

Latent Heat of Fusion, J/g 400
300
Maximum Temperature: Mechanical, °C 190
1100
Melting Completion (Liquidus), °C 650
1460
Melting Onset (Solidus), °C 600
1410
Specific Heat Capacity, J/kg-K 900
450
Thermal Conductivity, W/m-K 130
13
Thermal Expansion, µm/m-K 24
15

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
70
Density, g/cm3 2.7
8.4
Embodied Carbon, kg CO2/kg material 8.6
7.6
Embodied Energy, MJ/kg 150
110
Embodied Water, L/kg 1180
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.3 to 34
220
Resilience: Unit (Modulus of Resilience), kJ/m3 68 to 590
280
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 23 to 36
26
Strength to Weight: Bending, points 30 to 41
23
Thermal Diffusivity, mm2/s 55
3.4
Thermal Shock Resistance, points 10 to 16
19

Alloy Composition

Aluminum (Al), % 94.5 to 97.1
0
Carbon (C), % 0
0.080 to 0.16
Chromium (Cr), % 0.050 to 0.2
20 to 22.5
Cobalt (Co), % 0
18.5 to 21
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.4
24.3 to 37.1
Magnesium (Mg), % 2.4 to 3.0
0
Manganese (Mn), % 0.5 to 1.0
0 to 2.0
Molybdenum (Mo), % 0
2.5 to 3.5
Nickel (Ni), % 0
19 to 21
Niobium (Nb), % 0
0.75 to 1.3
Nitrogen (N), % 0
0.1 to 0.2
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0 to 0.25
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.2
0
Tungsten (W), % 0
2.0 to 3.0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0