MakeItFrom.com
Menu (ESC)

5454 Aluminum vs. EN 1.7362 Steel

5454 aluminum belongs to the aluminum alloys classification, while EN 1.7362 steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5454 aluminum and the bottom bar is EN 1.7362 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 61 to 93
150 to 180
Elastic (Young's, Tensile) Modulus, GPa 69
190
Elongation at Break, % 2.3 to 18
21 to 22
Fatigue Strength, MPa 83 to 160
140 to 250
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
74
Shear Strength, MPa 140 to 200
320 to 370
Tensile Strength: Ultimate (UTS), MPa 230 to 350
510 to 600
Tensile Strength: Yield (Proof), MPa 97 to 290
200 to 360

Thermal Properties

Latent Heat of Fusion, J/g 400
260
Maximum Temperature: Mechanical, °C 190
510
Melting Completion (Liquidus), °C 650
1460
Melting Onset (Solidus), °C 600
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 130
40
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
8.1
Electrical Conductivity: Equal Weight (Specific), % IACS 110
9.4

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
4.5
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.6
1.8
Embodied Energy, MJ/kg 150
23
Embodied Water, L/kg 1180
69

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.3 to 34
90 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 68 to 590
100 to 340
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 23 to 36
18 to 21
Strength to Weight: Bending, points 30 to 41
18 to 20
Thermal Diffusivity, mm2/s 55
11
Thermal Shock Resistance, points 10 to 16
14 to 17

Alloy Composition

Aluminum (Al), % 94.5 to 97.1
0
Carbon (C), % 0
0.1 to 0.15
Chromium (Cr), % 0.050 to 0.2
4.0 to 6.0
Copper (Cu), % 0 to 0.1
0 to 0.3
Iron (Fe), % 0 to 0.4
91.5 to 95.2
Magnesium (Mg), % 2.4 to 3.0
0
Manganese (Mn), % 0.5 to 1.0
0.3 to 0.6
Molybdenum (Mo), % 0
0.45 to 0.65
Nickel (Ni), % 0
0 to 0.3
Nitrogen (N), % 0
0 to 0.012
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.25
0 to 0.5
Sulfur (S), % 0
0 to 0.0050
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0

Comparable Variants