MakeItFrom.com
Menu (ESC)

5454 Aluminum vs. CC480K Bronze

5454 aluminum belongs to the aluminum alloys classification, while CC480K bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5454 aluminum and the bottom bar is CC480K bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 61 to 93
88
Elastic (Young's, Tensile) Modulus, GPa 69
110
Elongation at Break, % 2.3 to 18
13
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 26
41
Tensile Strength: Ultimate (UTS), MPa 230 to 350
300
Tensile Strength: Yield (Proof), MPa 97 to 290
180

Thermal Properties

Latent Heat of Fusion, J/g 400
190
Maximum Temperature: Mechanical, °C 190
170
Melting Completion (Liquidus), °C 650
1010
Melting Onset (Solidus), °C 600
900
Specific Heat Capacity, J/kg-K 900
370
Thermal Conductivity, W/m-K 130
63
Thermal Expansion, µm/m-K 24
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
11
Electrical Conductivity: Equal Weight (Specific), % IACS 110
11

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
35
Density, g/cm3 2.7
8.8
Embodied Carbon, kg CO2/kg material 8.6
3.7
Embodied Energy, MJ/kg 150
59
Embodied Water, L/kg 1180
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.3 to 34
35
Resilience: Unit (Modulus of Resilience), kJ/m3 68 to 590
140
Stiffness to Weight: Axial, points 14
6.9
Stiffness to Weight: Bending, points 50
18
Strength to Weight: Axial, points 23 to 36
9.6
Strength to Weight: Bending, points 30 to 41
11
Thermal Diffusivity, mm2/s 55
20
Thermal Shock Resistance, points 10 to 16
11

Alloy Composition

Aluminum (Al), % 94.5 to 97.1
0 to 0.010
Antimony (Sb), % 0
0 to 0.2
Chromium (Cr), % 0.050 to 0.2
0
Copper (Cu), % 0 to 0.1
86 to 90
Iron (Fe), % 0 to 0.4
0 to 0.2
Lead (Pb), % 0
0 to 1.0
Magnesium (Mg), % 2.4 to 3.0
0
Manganese (Mn), % 0.5 to 1.0
0 to 0.1
Nickel (Ni), % 0
0 to 2.0
Phosphorus (P), % 0
0 to 0.2
Silicon (Si), % 0 to 0.25
0 to 0.020
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0
9.0 to 11
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.25
0 to 0.5
Residuals, % 0 to 0.15
0